
Red Hat Enterprise Linux 7

Performance Tuning Guide

Optimizing subsystem throughput in Red Hat Enterprise Linux 7

Last Updated: 2018-10-22

Red Hat Enterprise Linux 7 Performance Tuning Guide

Optimizing subsystem throughput in Red Hat Enterprise Linux 7

Milan Navrátil
Red Hat Customer Content Services

Laura Bailey
Red Hat Customer Content Services

Charlie Boyle
Red Hat Customer Content Services

Edited by

Marek Suchánek
Red Hat Customer Content Services
msuchane@redhat.com

Legal Notice

Copyright © 2018 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The Red Hat Enterprise Linux 7 Performance Tuning Guide explains how to optimize Red Hat
Enterprise Linux 7 performance. It also documents performance-related upgrades in Red Hat
Enterprise Linux 7. The Performance Tuning Guide presents only field-tested and proven
procedures. Nonetheless, all prospective configurations should be set up and tested in a testing
environment before being applied to a production system. Backing up all data and configuration
settings prior to tuning is also recommended. To expand your expertise, you might also be
interested in the Red Hat Enterprise Linux Performance Tuning (RH442) training course.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
Who Should Read This Book

CHAPTER 2. PERFORMANCE MONITORING TOOLS
2.1. /PROC
2.2. GNOME SYSTEM MONITOR
2.3. BUILT-IN COMMAND-LINE TOOLS
2.4. PERF
2.5. TURBOSTAT
2.6. IOSTAT
2.7. IRQBALANCE
2.8. SS
2.9. NUMASTAT
2.10. NUMAD
2.11. SYSTEMTAP
2.12. OPROFILE
2.13. VALGRIND
2.14. PQOS

CHAPTER 3. TUNED
3.1. TUNED OVERVIEW
3.2. PERFORMANCE TUNING WITH TUNED AND TUNED-ADM

CHAPTER 4. TUNA
4.1. REVIEWING THE SYSTEM WITH TUNA
4.2. TUNING CPUS WITH TUNA
4.3. TUNING IRQS WITH TUNA
4.4. TUNING TASKS WITH TUNA
4.5. EXAMPLES OF USING TUNA

CHAPTER 5. PERFORMANCE CO-PILOT (PCP)
5.1. PCP OVERVIEW AND RESOURCES
5.2. XFS FILE SYSTEM PERFORMANCE ANALYSIS WITH PERFORMANCE CO-PILOT
5.3. PERFORMING MINIMAL PCP SETUP TO GATHER FILE SYSTEM DATA

CHAPTER 6. CPU
6.1. CONSIDERATIONS
6.2. MONITORING AND DIAGNOSING PERFORMANCE PROBLEMS
6.3. CONFIGURATION SUGGESTIONS

CHAPTER 7. MEMORY
7.1. CONSIDERATIONS
7.2. MONITORING AND DIAGNOSING PERFORMANCE PROBLEMS
7.3. CONFIGURING HUGETLB HUGE PAGES
7.4. CONFIGURING TRANSPARENT HUGE PAGES
7.5. CONFIGURING SYSTEM MEMORY CAPACITY

CHAPTER 8. STORAGE AND FILE SYSTEMS
8.1. CONSIDERATIONS
8.2. MONITORING AND DIAGNOSING PERFORMANCE PROBLEMS
8.3. SOLID-STATE DISKS
8.4. CONFIGURATION TOOLS

4
4

5
5
5
6
7
7
7
7
8
8
8
9
9
9

10

12
12
22

25
25
26
26
27
28

30
30
30
38

40
40
45
46

52
52
52
56
59
60

64
64
69
73
73

Table of Contents

1

. .

. .

. .

CHAPTER 9. NETWORKING
9.1. CONSIDERATIONS
9.2. MONITORING AND DIAGNOSING PERFORMANCE PROBLEMS
9.3. CONFIGURATION TOOLS

APPENDIX A. TOOL REFERENCE
A.1. IRQBALANCE
A.2. ETHTOOL
A.3. SS
A.4. TUNED
A.5. TUNED-ADM
A.6. PERF
A.7. PERFORMANCE CO-PILOT (PCP)
A.8. VMSTAT
A.9. X86_ENERGY_PERF_POLICY
A.10. TURBOSTAT
A.11. NUMASTAT
A.12. NUMACTL
A.13. NUMAD
A.14. OPROFILE
A.15. TASKSET
A.16. SYSTEMTAP

APPENDIX B. REVISION HISTORY

86
86
87
88

95
95
96
96
96
97
98
99

103
104
105
106
107
108
109
110
111

112

Performance Tuning Guide

2

Table of Contents

3

CHAPTER 1. INTRODUCTION
To learn about features introduced in each Red Hat Enterprise Linux 7 minor release, see the Release
Notes for respective minor versions.

The Performance Tuning Guide is a comprehensive guide to optimizing the various subsystems that
make up Red Hat Enterprise Linux 7 for specific purposes. This guide also outlines the performance
monitoring and tuning tools available in Red Hat Enterprise Linux 7.

Before you begin tuning, Red Hat has the following important recommendations:

Back up before you configure

The default settings in Red Hat Enterprise Linux 7 are suitable for most services running under
moderate loads. Improving the performance of a specific subsystem may affect another system
adversely. Back up all data and configuration information before you begin tuning your system.

Test configuration out of production

The procedures documented in the Performance Tuning Guide are tested extensively by Red Hat
engineers in both lab and field. Nonetheless, Red Hat recommends testing all planned configurations
in a secure testing environment before applying those configurations to production systems.

Who Should Read This Book
The Performance Tuning Guide has been written primarily for two distinct but overlapping audiences:

System administrators

The Performance Tuning Guide documents the effects of each configuration option in detail so that
system administrators can optimize Red Hat Enterprise Linux 7 for their specific purpose. Procedures
in this guide are suitable for system administrators with Red Hat Certified Engineer (RHCE)
certification or an equivalent amount of experience (3–5 years' experience deploying and managing
Linux-based systems).

System and business analysts

This guide explains Red Hat Enterprise Linux 7 performance features at a high level. It provides
information about how subsystems perform under specific workloads, allowing analysts to determine
whether Red Hat Enterprise Linux 7 is suitable for their use case.

Where possible, the Performance Tuning Guide also refers readers to more detailed feature
documentation. This allows readers to develop the in-depth knowledge required to formulate the
detailed deployment and optimization strategies necessary for infrastructure and deployment
proposals.

Performance Tuning Guide

4

https://access.redhat.com/documentation/en/red-hat-enterprise-linux/?category=release%2520notes&version=7

CHAPTER 2. PERFORMANCE MONITORING TOOLS
This chapter briefly describes some of the performance monitoring and configuration tools available for
Red Hat Enterprise Linux 7. Where possible, this chapter directs readers to further information about how
to use the tool, and examples of real life situations that the tool can be used to resolve.

The following knowledge base article provides a more comprehensive list of performance monitoring
tools suitable for use with Red Hat Enterprise Linux: https://access.redhat.com/site/solutions/173863.

2.1. /PROC

The /proc "file system" is a directory that contains a hierarchy of files that represent the current state of
the Linux kernel. It allows users and applications to see the kernel's view of the system.

The /proc directory also contains information about system hardware and any currently running
processes. Most files in the /proc file system are read-only, but some files (primarily those in /proc/sys)
can be manipulated by users and applications to communicate configuration changes to the kernel.

For further information about viewing and editing files in the /proc directory, refer to the Red Hat
Enterprise Linux 7 System Administrator's Guide.

2.2. GNOME SYSTEM MONITOR

The GNOME desktop environment includes a graphical tool, System Monitor, to assist you in monitoring
and modifying the behavior of your system. System Monitor displays basic system information and
allows you to monitor system processes and resource or file system usage.

System Monitor has four tabs, each of which displays different information about the system.

System

This tab displays basic information about the system's hardware and software.

Processes

This tab displays detailed information about active processes and the relationships between those
processes. The processes displayed can be filtered to make certain processes easier to find. This tab
also lets you perform some actions on the processes displayed, such as start, stop, kill, and change
priority.

Resources

This tab displays the current CPU time usage, memory and swap space usage, and network usage.

File Systems

This tab lists all mounted file systems, and provides some basic information about each, such as the
file system type, mount point, and memory usage.

To start System Monitor, press the Super key to enter the Activities Overview, type System Monitor, and
then press Enter.

For more information about System Monitor, see either the Help menu in the application, or the Red Hat
Enterprise Linux 7 System Administrator's Guide.

CHAPTER 2. PERFORMANCE MONITORING TOOLS

5

https://access.redhat.com/site/solutions/173863
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/index

2.3. BUILT-IN COMMAND-LINE TOOLS

Red Hat Enterprise Linux 7 provides several tools that can be used to monitor your system from the
command line, allowing you to monitor your system outside run level 5. This chapter discusses each tool
briefly and provides links to further information about where each tool should be used, and how to use
them.

2.3.1. top

The top tool, provided by the procps-ng package, gives a dynamic view of the processes in a running
system. It can display a variety of information, including a system summary and a list of tasks currently
being managed by the Linux kernel. It also has a limited ability to manipulate processes, and to make
configuration changes persistent across system restarts.

By default, the processes displayed are ordered according to the percentage of CPU usage, so that you
can easily see the processes consuming the most resources. Both the information top displays and its
operation are highly configurable to allow you to concentrate on different usage statistics as required.

For detailed information about using top, see the man page:

$ man top

2.3.2. ps

The ps tool, provided by the procps-ng package, takes a snapshot of a select group of active processes.
By default, the group examined is limited to processes that are owned by the current user and associated
with the terminal in which ps is run.

ps can provide more detailed information about processes than top, but by default it provides a single
snapshot of this data, ordered by process identifier.

For detailed information about using ps, see the man page:

$ man ps

2.3.3. Virtual Memory Statistics (vmstat)

The Virtual Memory Statistics tool, vmstat, provides instant reports on your system's processes, memory,
paging, block input/output, interrupts, and CPU activity. Vmstat lets you set a sampling interval so that
you can observe system activity in near-real time.

vmstat is provided by the procps-ng package. For detailed information about using vmstat, see the man
page:

$ man vmstat

2.3.4. System Activity Reporter (sar)

The System Activity Reporter, sar, collects and reports information about system activity that has
occurred so far on the current day. The default output displays the current day's CPU usage at 10 minute
intervals from the beginning of the day (00:00:00 according to your system clock).

Performance Tuning Guide

6

You can also use the -i option to set the interval time in seconds, for example, sar -i 60 tells sar to
check CPU usage every minute.

sar is a useful alternative to manually creating periodic reports on system activity with top. It is provided
by the sysstat package. For detailed information about using sar, see the man page:

$ man sar

2.4. PERF

The perf tool uses hardware performance counters and kernel tracepoints to track the impact of other
commands and applications on your system. Various perf subcommands display and record statistics for
common performance events, and analyze and report on the data recorded.

For detailed information about perf and its subcommands, see Section A.6, “perf”.

Alternatively, more information is available in the Red Hat Enterprise Linux 7 Developer Guide.

2.5. TURBOSTAT

Turbostat is provided by the kernel-tools package. It reports on processor topology, frequency, idle
power-state statistics, temperature, and power usage on Intel® 64 processors.

Turbostat is useful for identifying servers that are inefficient in terms of power usage or idle time. It also
helps to identify the rate of system management interrupts (SMIs) occurring on the system. It can also be
used to verify the effects of power management tuning.

Turbostat requires root privileges to run. It also requires processor support for the following:

invariant time stamp counters

APERF model-specific registers

MPERF model-specific registers

For more details about turbostat output and how to read it, see Section A.10, “turbostat”.

For more information about turbostat, see the man page:

$ man turbostat

2.6. IOSTAT

The iostat tool, provided by the sysstat package, monitors and reports on system input/output device
loading to help administrators make decisions about how to balance input/output load between physical
disks. The iostat tool reports on processor or device utilization since iostat was last run, or since boot.
You can focus the output of these reports on specific devices by using the parameters defined in the
iostat(1) manual page. For detailed information on the await value and what can cause its values to be
high, see the following Red Hat Knowledgebase article: What exactly is the meaning of value "await"
reported by iostat?

2.7. IRQBALANCE

CHAPTER 2. PERFORMANCE MONITORING TOOLS

7

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/developer_guide/
https://access.redhat.com/articles/524353

irqbalance is a command line tool that distributes hardware interrupts across processors to improve
system performance. For details about irqbalance, see Section A.1, “irqbalance” or the man page:

$ man irqbalance

2.8. SS

ss is a command-line utility that prints statistical information about sockets, allowing administrators to
assess device performance over time. By default, ss lists open non-listening TCP sockets that have
established connections, but a number of useful options are provided to help administrators filter out
statistics about specific sockets.

Red Hat recommends using ss over netstat in Red Hat Enterprise Linux 7.

One common usage is ss -tmpie which displays detailed information (including internal information)
about TCP sockets, memory usage, and processes using the socket.

ss is provided by the iproute package. For more information, see the man page:

$ man ss

2.9. NUMASTAT

The numastat tool displays memory statistics for processes and the operating system on a per-NUMA-
node basis.

By default, numastat displays per-node NUMA hit an miss system statistics from the kernel memory
allocator. Optimal performance is indicated by high numa_hit values and low numa_miss values.
Numastat also provides a number of command line options, which can show how system and process
memory is distributed across NUMA nodes in the system.

It can be useful to cross-reference per-node numastat output with per-CPU top output to verify that
process threads are running on the same node to which memory is allocated.

Numastat is provided by the numactl package. For details about how to use numastat, see
Section A.11, “numastat”. For further information about numastat, see the man page:

$ man numastat

2.10. NUMAD

numad is an automatic NUMA affinity management daemon. It monitors NUMA topology and resource
usage within a system in order to dynamically improve NUMA resource allocation and management (and
therefore system performance). Depending on system workload, numad can provide up to 50 percent
improvements in performance benchmarks. It also provides a pre-placement advice service that can be
queried by various job management systems to provide assistance with the initial binding of CPU and
memory resources for their processes.

numad monitors available system resources on a per-node basis by periodically accessing information in
the /proc file system. It tries to maintain a specified resource usage level, and rebalances resource
allocation when necessary by moving processes between NUMA nodes. numad attempts to achieve
optimal NUMA performance by localizing and isolating significant processes on a subset of the system's
NUMA nodes.

Performance Tuning Guide

8

numad primarily benefits systems with long-running processes that consume significant amounts of
resources, and are contained in a subset of the total system resources. It may also benefit applications
that consume multiple NUMA nodes' worth of resources; however, the benefits provided by numad
decrease as the consumed percentage of system resources increases.

numad is unlikely to improve performance when processes run for only a few minutes, or do not
consume many resources. Systems with continuous, unpredictable memory access patterns, such as
large in-memory databases, are also unlikely to benefit from using numad.

For further information about using numad, see Section 6.3.5, “Automatic NUMA Affinity Management
with numad” or Section A.13, “numad”, or refer to the man page:

$ man numad

2.11. SYSTEMTAP

SystemTap is a tracing and probing tool that lets you monitor and analyze operating system activities,
especially kernel activities, in fine detail. It provides information similar to the output of tools like top, ps,
netstat, and iostat, but includes additional options for filtering and analyzing collected data.

SystemTap provides a deeper, more precise analysis of system activities and application behavior to
allow you to pinpoint system and application bottlenecks.

For more detailed information about SystemTap, see the Red Hat Enterprise Linux 7 SystemTap
Beginners Guide and the Red Hat Enterprise Linux 7 SystemTap Tapset Reference.

2.12. OPROFILE

OProfile is a system-wide performance monitoring tool. It uses the processor's dedicated performance
monitoring hardware to retrieve information about the kernel and system executables to determine the
frequency of certain events, such as when memory is referenced, the number of second-level cache
requests, and the number of hardware requests received. OProfile can also be used to determine
processor usage, and to determine which applications and services are used most often.

However, OProfile does have several limitations:

Performance monitoring samples may not be precise. Because the processor may execute
instructions out of order, samples can be recorded from a nearby instruction instead of the
instruction that triggered the interrupt.

OProfile expects processes to start and stop multiple times. As such, samples from multiple runs
are allowed to accumulate. You may need to clear the sample data from previous runs.

OProfile focuses on identifying problems with processes limited by CPU access. It is therefore
not useful for identifying processes that are sleeping while they wait for locks on other events.

For more detailed information about OProfile, see Section A.14, “OProfile”, or the Red Hat
Enterprise Linux 7 System Administrator's Guide. Alternatively, refer to the documentation on your
system, located in /usr/share/doc/oprofile-version.

2.13. VALGRIND

Valgrind provides a number of detection and profiling tools to help improve the performance of your
applications. These tools can detect memory and thread-related errors, as well as heap, stack, and

CHAPTER 2. PERFORMANCE MONITORING TOOLS

9

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/systemtap_beginners_guide/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/systemtap_tapset_reference/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/index

array overruns, letting you easily locate and correct errors in your application code. They can also profile
the cache, the heap, and branch-prediction to identify factors that may increase application speed and
minimize memory usage.

Valgrind analyzes your application by running it on a synthetic CPU and instrumenting existing
application code as it is executed. It then prints commentary that clearly identifies each process involved
in application execution to a user-specified file, file descriptor, or network socket. Note that executing
instrumented code can take between four and fifty times longer than normal execution.

Valgrind can be used on your application as-is, without recompiling. However, because Valgrind uses
debugging information to pinpoint issues in your code, if your application and support libraries were not
compiled with debugging information enabled, Red Hat recommends recompiling to include this
information.

Valgrind also integrates with the GNU Project Debugger (gdb) to improve debugging efficiency.

Valgrind and its subordinate tools are useful for memory profiling. For detailed information about using
Valgrind to profile system memory, see Section 7.2.2, “Profiling Application Memory Usage with
Valgrind”.

For detailed information about Valgrind, see the Red Hat Enterprise Linux 7 Developer Guide.

For detailed information about using Valgrind, see the man page:

$ man valgrind

Accompanying documentation can also be found in /usr/share/doc/valgrind-version when the
valgrind package is installed.

2.14. PQOS

The pqos utility, which is available from the intel-cmt-cat package, enables you to both monitor and
control CPU cache and memory bandwidth on recent Intel processors. You can use it for workload
isolation and improving performance determinism in multitenant deployments.

It exposes the following processor capabilities from the Resource Director Technology (RDT) feature set:

Monitoring

Last Level Cache (LLC) usage and contention monitoring using the Cache Monitoring
Technology (CMT)

Per-thread memory bandwidth monitoring using the Memory Bandwidth Monitoring (MBM)
technology

Allocation

Controlling the amount of LLC space that is available for specific threads and processes
using the Cache Allocation Technology (CAT)

Controlling code and data placement in the LLC using the Code and Data Prioritization (CDP)
technology

Use the following command to list the RDT capabilities supported on your system and to display the
current RDT configuration:

Performance Tuning Guide

10

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/developer_guide/

pqos --show --verbose

Additional Resources

For more information about using pqos, see the pqos(8) man page.

For detailed information on the CMT, MBM, CAT, and CDP processor features, see the official
Intel documentation: Intel® Resource Director Technology (Intel® RDT).

For the list of supported processor models, see the Cache Monitoring Technology and Cache
Allocation Technology web page.

CHAPTER 2. PERFORMANCE MONITORING TOOLS

11

https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/communications/cache-monitoring-cache-allocation-technologies.html

CHAPTER 3. TUNED

3.1. TUNED OVERVIEW

Tuned is a daemon that uses udev to monitor connected devices and statically and dynamically tunes
system settings according to a selected profile. Tuned is distributed with a number of predefined profiles
for common use cases like high throughput, low latency, or powersave. It is possible to modify the rules
defined for each profile and customize how to tune a particular device. To revert all changes made to the
system settings by a certain profile, you can either switch to another profile or deactivate the tuned
service.

NOTE

Starting with Red Hat Enterprise Linux 7.2, you can run Tuned in no-daemon mode,
which does not require any resident memory. In this mode, tuned applies the settings and
exits. The no-daemon mode is disabled by default because a lot of tuned functionality is
missing in this mode, including D-Bus support, hot-plug support, or rollback support for
settings. To enable no-daemon mode, set the following in the /etc/tuned/tuned-
main.conf file: daemon = 0.

Static tuning mainly consists of the application of predefined sysctl and sysfs settings and one-shot
activation of several configuration tools like ethtool. Tuned also monitors the use of system components
and tunes system settings dynamically based on that monitoring information.

Dynamic tuning accounts for the way that various system components are used differently throughout
the uptime for any given system. For example, the hard drive is used heavily during startup and login,
but is barely used later when the user might mainly work with applications such as web browsers or
email clients. Similarly, the CPU and network devices are used differently at different times. Tuned
monitors the activity of these components and reacts to the changes in their use.

As a practical example, consider a typical office workstation. Most of the time, the Ethernet network
interface is very inactive. Only a few emails go in and out every once in a while or some web pages
might be loaded. For those kinds of loads, the network interface does not have to run at full speed all the
time, as it does by default. Tuned has a monitoring and tuning plug-in for network devices that can
detect this low activity and then automatically lower the speed of that interface, typically resulting in a
lower power usage. If the activity on the interface increases for a longer period of time, for example
because a DVD image is being downloaded or an email with a large attachment is opened, tuned
detects this and sets the interface speed to maximum to offer the best performance while the activity
level is so high. This principle is used for other plug-ins for CPU and hard disks as well.

Dynamic tuning is globally disabled in Red Hat Enterprise Linux and can be enabled by editing the
/etc/tuned/tuned-main.conf file and changing the dynamic_tuning flag to 1.

3.1.1. Plug-ins

Tuned uses two types of plugins: monitoring plugins and tuning plugins. Monitoring plugins are used to
get information from a running system. Currently, the following monitoring plugins are implemented:

disk

Gets disk load (number of IO operations) per device and measurement interval.

net

Performance Tuning Guide

12

Gets network load (number of transferred packets) per network card and measurement interval.

load

Gets CPU load per CPU and measurement interval.

The output of the monitoring plugins can be used by tuning plugins for dynamic tuning. Currently
implemented dynamic tuning algorithms try to balance the performance and powersave and are
therefore disabled in the performance profiles (dynamic tuning for individual plugins can be enabled or
disabled in the tuned profiles). Monitoring plugins are automatically instantiated whenever their metrics
are needed by any of the enabled tuning plugins. If two tuning plugins require the same data, only one
instance of the monitoring plugin is created and the data is shared.

Each tuning plugin tunes an individual subsystem and takes several parameters that are populated from
the tuned profiles. Each subsystem can have multiple devices (for example, multiple CPUs or network
cards) that are handled by individual instances of the tuning plugins. Specific settings for individual
devices are also supported. The supplied profiles use wildcards to match all devices of individual
subsystems (for details on how to change this, refer to Section 3.1.3, “Custom Profiles”), which allows
the plugins to tune these subsystems according to the required goal (selected profile) and the only thing
that the user needs to do is to select the correct tuned profile.

Currently, the following tuning plugins are implemented (only some of these plugins implement dynamic
tuning, parameters supported by plugins are also listed):

cpu

Sets the CPU governor to the value specified by the governor parameter and dynamically changes
the PM QoS CPU DMA latency according to the CPU load. If the CPU load is lower than the value
specified by the load_threshold parameter, the latency is set to the value specified by the
latency_high parameter, otherwise it is set to value specified by latency_low. Also the latency
can be forced to a specific value without being dynamically changed further. This can be
accomplished by setting the force_latency parameter to the required latency value.

eeepc_she

Dynamically sets the FSB speed according to the CPU load; this feature can be found on some
netbooks and is also known as the Asus Super Hybrid Engine. If the CPU load is lower or equal to the
value specified by the load_threshold_powersave parameter, the plugin sets the FSB speed to
the value specified by the she_powersave parameter (for details about the FSB frequencies and
corresponding values, see the kernel documentation, the provided defaults should work for most
users). If the CPU load is higher or equal to the value specified by the load_threshold_normal
parameter, it sets the FSB speed to the value specified by the she_normal parameter. Static tuning
is not supported and the plugin is transparently disabled if the hardware support for this feature is not
detected.

net

Configures wake-on-lan to the values specified by the wake_on_lan parameter (it uses same syntax
as the ethtool utility). It also dynamically changes the interface speed according to the interface
utilization.

sysctl

Sets various sysctl settings specified by the plugin parameters. The syntax is name=value, where
name is the same as the name provided by the sysctl tool. Use this plugin if you need to change
settings that are not covered by other plugins (but prefer specific plugins if the settings are covered

CHAPTER 3. TUNED

13

by them).

usb

Sets autosuspend timeout of USB devices to the value specified by the autosuspend parameter.
The value 0 means that autosuspend is disabled.

vm

Enables or disables transparent huge pages depending on the Boolean value of the
transparent_hugepages parameter.

audio

Sets the autosuspend timeout for audio codecs to the value specified by the timeout parameter.
Currently snd_hda_intel and snd_ac97_codec are supported. The value 0 means that the
autosuspend is disabled. You can also enforce the controller reset by setting the Boolean parameter
reset_controller to true.

disk

Sets the elevator to the value specified by the elevator parameter. It also sets ALPM to the value
specified by the alpm parameter, ASPM to the value specified by the aspm parameter, scheduler
quantum to the value specified by the scheduler_quantum parameter, disk spindown timeout to the
value specified by the spindown parameter, disk readahead to the value specified by the
readahead parameter, and can multiply the current disk readahead value by the constant specified
by the readahead_multiply parameter. In addition, this plugin dynamically changes the advanced
power management and spindown timeout setting for the drive according to the current drive
utilization. The dynamic tuning can be controlled by the Boolean parameter dynamic and is enabled
by default.

mounts

Enables or disables barriers for mounts according to the Boolean value of the disable_barriers
parameter.

script

This plugin can be used for the execution of an external script that is run when the profile is loaded or
unloaded. The script is called by one argument which can be start or stop (it depends on whether
the script is called during the profile load or unload). The script file name can be specified by the
script parameter. Note that you need to correctly implement the stop action in your script and revert
all setting you changed during the start action, otherwise the roll-back will not work. For your
convenience, the functions Bash helper script is installed by default and allows you to import and
use various functions defined in it. Note that this functionality is provided mainly for backwards
compatibility and it is recommended that you use it as the last resort and prefer other plugins if they
cover the required settings.

sysfs

Sets various sysfs settings specified by the plugin parameters. The syntax is name=value, where
name is the sysfs path to use. Use this plugin in case you need to change some settings that are not
covered by other plugins (please prefer specific plugins if they cover the required settings).

video

Sets various powersave levels on video cards (currently only the Radeon cards are supported). The

Performance Tuning Guide

14

powersave level can be specified by using the radeon_powersave parameter. Supported values
are: default, auto, low, mid, high, and dynpm. For details, refer to
http://www.x.org/wiki/RadeonFeature#KMS_Power_Management_Options. Note that this plugin is
experimental and the parameter may change in the future releases.

bootloader

Adds parameters to the kernel boot command line. This plugin supports the legacy GRUB 1, GRUB 2,
and also GRUB with Extensible Firmware Interface (EFI). Customized non-standard location of the
grub2 configuration file can be specified by the grub2_cfg_file option. The parameters are added
to the current grub configuration and its templates. The machine needs to be rebooted for the kernel
parameters to take effect.

The parameters can be specified by the following syntax:

 cmdline=arg1 arg2 ... argn.

3.1.2. Installation and Usage

To install the tuned package, run, as root, the following command:

yum install tuned

Installation of the tuned package also presets the profile which should be the best for you system.
Currently the default profile is selected according the following customizable rules:

throughput-performance

This is pre-selected on Red Hat Enterprise Linux 7 operating systems which act as compute nodes.
The goal on such systems is the best throughput performance.

virtual-guest

This is pre-selected on virtual machines. The goal is best performance. If you are not interested in
best performance, you would probably like to change it to the balanced or powersave profile (see
bellow).

balanced

This is pre-selected in all other cases. The goal is balanced performance and power consumption.

To start tuned, run, as root, the following command:

systemctl start tuned

To enable tuned to start every time the machine boots, type the following command:

systemctl enable tuned

For other tuned control such as selection of profiles and other, use:

tuned-adm

CHAPTER 3. TUNED

15

http://www.x.org/wiki/RadeonFeature#KMS_Power_Management_Options

This command requires the tuned service to be running.

To view the available installed profiles, run:

tuned-adm list

To view the currently activated profile, run:

tuned-adm active

To select or activate a profile, run:

tuned-adm profile profile

For example:

tuned-adm profile powersave

As an experimental feature it is possible to select more profiles at once. The tuned application will try to
merge them during the load. If there are conflicts the settings from the last specified profile will take
precedence. This is done automatically and there is no checking whether the resulting combination of
parameters makes sense. If used without thinking, the feature may tune some parameters the opposite
way which may be counterproductive. An example of such situation would be setting the disk for the
high throughput by using the throughput-performance profile and concurrently setting the disk
spindown to the low value by the spindown-disk profile. The following example optimizes the system
for run in a virtual machine for the best performance and concurrently tune it for the low power
consumption while the low power consumption is the priority:

tuned-adm profile virtual-guest powersave

To let tuned recommend you the best suitable profile for your system without changing any existing
profiles and using the same logic as used during the installation, run the following command:

tuned-adm recommend

Tuned itself has additional options that you can use when you run it manually. However, this is not
recommended and is mostly intended for debugging purposes. The available options can be viewing
using the following command:

tuned --help

3.1.3. Custom Profiles

Distribution-specific profiles are stored in the /usr/lib/tuned/ directory. Each profile has its own
directory. The profile consists of the main configuration file called tuned.conf, and optionally other
files, for example helper scripts.

If you need to customize a profile, copy the profile directory into the /etc/tuned/ directory, which is
used for custom profiles. If there are two profiles of the same name, the profile included in
/etc/tuned/ is used.

Performance Tuning Guide

16

You can also create your own profile in the /etc/tuned/ directory to use a profile included in
/usr/lib/tuned/ with only certain parameters adjusted or overridden.

The tuned.conf file contains several sections. There is one [main] section. The other sections are
configurations for plugins instances. All sections are optional including the [main] section. Lines starting
with the hash sign (#) are comments.

The [main] section has the following option:

include=profile

The specified profile will be included, e.g. include=powersave will include the powersave profile.

Sections describing plugins instances are formatted in the following way:

[NAME]
type=TYPE
devices=DEVICES

NAME is the name of the plugin instance as it is used in the logs. It can be an arbitrary string. TYPE is
the type of the tuning plugin. For a list and descriptions of the tuning plugins refer to Section 3.1.1, “Plug-
ins”. DEVICES is the list of devices this plugin instance will handle. The devices line can contain a list,
a wildcard (*), and negation (!). You can also combine rules. If there is no devices line all devices
present or later attached on the system of the TYPE will be handled by the plugin instance. This is same
as using devices=*. If no instance of the plugin is specified, the plugin will not be enabled. If the plugin
supports more options, they can be also specified in the plugin section. If the option is not specified, the
default value will be used (if not previously specified in the included plugin). For the list of plugin options
refer to Section 3.1.1, “Plug-ins”).

Example 3.1. Describing Plug-ins Instances

The following example will match everything starting with sd, such as sda or sdb, and does not
disable barriers on them:

[data_disk]
type=disk
devices=sd*
disable_barriers=false

The following example will match everything except sda1 and sda2:

[data_disk]
type=disk
devices=!sda1, !sda2
disable_barriers=false

In cases where you do not need custom names for the plugin instance and there is only one definition of
the instance in your configuration file, Tuned supports the following short syntax:

[TYPE]
devices=DEVICES

CHAPTER 3. TUNED

17

In this case, it is possible to omit the type line. The instance will then be referred to with a name, same
as the type. The previous example could be then rewritten into:

[disk]
devices=sdb*
disable_barriers=false

If the same section is specified more than once using the include option, then the settings are merged.
If they cannot be merged due to a conflict, the last conflicting definition overrides the previous settings in
conflict. Sometimes, you do not know what was previously defined. In such cases, you can use the
replace boolean option and set it to true. This will cause all the previous definitions with the same
name to be overwritten and the merge will not happen.

You can also disable the plugin by specifying the enabled=false option. This has the same effect as if
the instance was never defined. Disabling the plugin can be useful if you are redefining the previous
definition from the include option and do not want the plugin to be active in your custom profile.

The following is an example of a custom profile that is based on the balanced profile and extends it the
way that ALPM for all devices is set to the maximal powersaving.

[main]
include=balanced

[disk]
alpm=min_power

The following is an example of a custom profile that adds isolcpus=2 to the kernel boot command line:

[bootloader]
cmdline=isolcpus=2

The machine needs to be rebooted after the profile is applied for the changes to take effect.

3.1.4. Tuned-adm

A detailed analysis of a system can be very time-consuming. Red Hat Enterprise Linux 7 includes a
number of predefined profiles for typical use cases that you can easily activate with the tuned-adm
utility. You can also create, modify, and delete profiles.

To list all available profiles and identify the current active profile, run:

tuned-adm list

To only display the currently active profile, run:

tuned-adm active

To switch to one of the available profiles, run:

tuned-adm profile profile_name

for example:

Performance Tuning Guide

18

tuned-adm profile latency-performance

To disable all tuning:

tuned-adm off

The following is a list of profiles which are installed with the base package:

balanced

The default power-saving profile. It is intended to be a compromise between performance and power
consumption. It tries to use auto-scaling and auto-tuning whenever possible. It has good results for
most loads. The only drawback is the increased latency. In the current tuned release it enables the
CPU, disk, audio and video plugins and activates the conservative governor. The
radeon_powersave is set to auto.

powersave

A profile for maximum power saving performance. It can throttle the performance in order to minimize
the actual power consumption. In the current tuned release it enables USB autosuspend, WiFi power
saving and ALPM power savings for SATA host adapters. It also schedules multi-core power savings
for systems with a low wakeup rate and activates the ondemand governor. It enables AC97 audio
power saving or, depending on your system, HDA-Intel power savings with a 10 seconds timeout. In
case your system contains supported Radeon graphics card with enabled KMS it configures it to
automatic power saving. On Asus Eee PCs a dynamic Super Hybrid Engine is enabled.

NOTE

The powersave profile may not always be the most efficient. Consider there is a
defined amount of work that needs to be done, for example a video file that needs to
be transcoded. Your machine can consume less energy if the transcoding is done on
the full power, because the task will be finished quickly, the machine will start to idle
and can automatically step-down to very efficient power save modes. On the other
hand if you transcode the file with a throttled machine, the machine will consume less
power during the transcoding, but the process will take longer and the overall
consumed energy can be higher. That is why the balanced profile can be generally a
better option.

throughput-performance

A server profile optimized for high throughput. It disables power savings mechanisms and enables
sysctl settings that improve the throughput performance of the disk, network IO and switched to the
deadline scheduler. CPU governor is set to performance.

latency-performance

A server profile optimized for low latency. It disables power savings mechanisms and enables sysctl
settings that improve the latency. CPU governor is set to performance and the CPU is locked to the
low C states (by PM QoS).

network-latency

A profile for low latency network tuning. It is based on the latency-performance profile. It
additionally disables transparent hugepages, NUMA balancing and tunes several other network
related sysctl parameters.

CHAPTER 3. TUNED

19

network-throughput

Profile for throughput network tuning. It is based on the throughput-performance profile. It
additionally increases kernel network buffers.

virtual-guest

A profile designed for virtual guests based on the enterprise-storage profile that, among other tasks,
decreases virtual memory swappiness and increases disk readahead values. It does not disable disk
barriers.

virtual-host

A profile designed for virtual hosts based on the enterprise-storage profile that, among other
tasks, decreases virtual memory swappiness, increases disk readahead values and enables a more
aggressive value of dirty pages.

oracle

A profile optimized for Oracle databases loads based on throughput-performance profile. It
additionally disables transparent huge pages and modifies some other performance related kernel
parameters. This profile is provided by tuned-profiles-oracle package. It is available in Red Hat
Enterprise Linux 6.8 and later.

desktop

A profile optimized for desktops, based on the balanced profile. It additionally enables scheduler
autogroups for better response of interactive applications.

NOTE

There may be more product specific or third party Tuned profiles available. Such profiles
are usually provided by separate RPM packages.

Additional predefined profiles can be installed with the tuned-profiles-compat package available in the
Optional channel. These profiles are intended for backward compatibility and are no longer developed.
The generalized profiles from the base package will mostly perform the same or better. If you do not
have specific reason for using them, please prefer the above mentioned profiles from the base package.
The compat profiles are following:

default

This has the lowest impact on power saving of the available profiles and only enables CPU and disk
plugins of tuned.

desktop-powersave

A power-saving profile directed at desktop systems. Enables ALPM power saving for SATA host
adapters as well as the CPU, Ethernet, and disk plugins of tuned.

laptop-ac-powersave

A medium-impact power-saving profile directed at laptops running on AC. Enables ALPM
powersaving for SATA host adapters, Wi-Fi power saving, as well as the CPU, Ethernet, and disk
plugins of tuned.

laptop-battery-powersave

Performance Tuning Guide

20

A high-impact power-saving profile directed at laptops running on battery. In the current tuned
implementation it is an alias for the powersave profile.

spindown-disk

A power-saving profile for machines with classic HDDs to maximize spindown time. It disables the
tuned power savings mechanism, disables USB autosuspend, disables Bluetooth, enables Wi-Fi
power saving, disables logs syncing, increases disk write-back time, and lowers disk swappiness. All
partitions are remounted with the noatime option.

enterprise-storage

A server profile directed at enterprise-class storage, maximizing I/O throughput. It activates the same
settings as the throughput-performance profile, multiplies readahead settings, and disables
barriers on non-root and non-boot partitions.

NOTE

Use the atomic-host profile on physical machines, and the atomic-guest profile on
virtual machines.

To enable the tuned profiles for Red Hat Enterprise Linux Atomic Host, install the tuned-profiles-atomic
package. Run, as root, the following command:

yum install tuned-profiles-atomic

The two tuned profiles for Red Hat Enterprise Linux Atomic Host are:

atomic-host

A profile optimized for Red Hat Enterprise Linux Atomic Host, when used as a host system on a bare-
metal server, using the throughput-performance profile. It additionally increases SELinux AVC cache,
PID limit, and tunes netfilter connections tracking.

atomic-guest

A profile optimized for Red Hat Enterprise Linux Atomic Host, when used as a guest system based on
the virtual-guest profile. It additionally increases SELinux AVC cache, PID limit, and tunes netfilter
connections tracking.

NOTE

There may be more product-specific or third-party tuned profiles available. These profiles
are usually provided by separate RPM packages. Three tuned profiles are available that
enable to edit the kernel command line: realtime, realtime-virtual-host and
realtime-virtual-guest.

To enable the realtime profile, install the tuned-profiles-realtime package. Run, as root, the following
command:

yum install tuned-profiles-realtime

CHAPTER 3. TUNED

21

To enable the realtime-virtual-host and realtime-virtual-guest profiles, install the tuned-
profiles-nfv package. Run, as root, the following command:

yum install tuned-profiles-nfv

3.1.5. powertop2tuned

The powertop2tuned utility is a tool that allows you to create custom tuned profiles from the PowerTOP
suggestions.

To install the powertop2tuned application, run the following command as root:

yum install tuned-utils

To create a custom profile, run the following command as root:

powertop2tuned new_profile_name

By default it creates the profile in the /etc/tuned directory and it bases it on the currently selected
tuned profile. For safety reasons all PowerTOP tunings are initially disabled in the new profile. To
enable them uncomment the tunings of your interest in the /etc/tuned/profile/tuned.conf. You
can use the --enable or -e option that will generate the new profile with most of the tunings suggested
by PowerTOP enabled. Some dangerous tunings like the USB autosuspend will still be disabled. If you
really need them you will have to uncomment them manually. By default, the new profile is not activated.
To activate it run the following command:

tuned-adm profile new_profile_name

For a complete list of the options powertop2tuned supports, type in the following command:

powertop2tuned --help

3.2. PERFORMANCE TUNING WITH TUNED AND TUNED-ADM

The tuned tuning service can adapt the operating system to perform better under certain workloads by
setting a tuning profile. The tuned-adm command-line tool allows users to switch between different
tuning profiles.

tuned Profiles Overview
Several pre-defined profiles are included for common use cases, but tuned also enables you to define
custom profiles, which can be either based on one of the pre-defined profiles, or defined from scratch. In
Red Hat Enterprise Linux 7, the default profile is throughput-performance.

The profiles provided with tuned are divided into two categories: power-saving profiles, and
performance-boosting profiles. The performance-boosting profiles include profiles focus on the following
aspects:

low latency for storage and network

high throughput for storage and network

virtual machine performance

Performance Tuning Guide

22

virtualization host performance

tuned Boot Loader plug-in
You can use the tuned Bootloader plug-in to add parameters to the kernel (boot or dracut)
command line. Note that only the GRUB 2 boot loader is supported and a reboot is required to apply
profile changes. For example, to add the quiet parameter to a tuned profile, include the following lines
in the tuned.conf file:

[bootloader]
cmdline=quiet

Switching to another profile or manually stopping the tuned service removes the additional parameters.
If you shut down or reboot the system, the kernel parameters persist in the grub.cfg file.

Environment Variables and Expanding tuned Built-In Functions
If you run tuned-adm profile profile_name and then grub2-mkconfig -o profile_path
after updating GRUB 2 configuration, you can use Bash environment variables, which are expanded
after running grub2-mkconfig. For example, the following environment variable is expanded to
nfsroot=/root:

[bootloader]
cmdline="nfsroot=$HOME"

You can use tuned variables as an alternative to environment variables. In the following example,
${isolated_cores} expands to 1,2, so the kernel boots with the isolcpus=1,2 parameter:

[variables]
isolated_cores=1,2

[bootloader]
cmdline=isolcpus=${isolated_cores}

In the following example, ${non_isolated_cores} expands to 0,3-5, and the cpulist_invert
built-in function is called with the 0,3-5 arguments:

[variables]
non_isolated_cores=0,3-5

[bootloader]
cmdline=isolcpus=${f:cpulist_invert:${non_isolated_cores}}

The cpulist_invert function inverts the list of CPUs. For a 6-CPU machine, the inversion is 1,2, and
the kernel boots with the isolcpus=1,2 command-line parameter.

Using tuned environment variables reduces the amount of necessary typing. You can also use various
built-in functions together with tuned variables. If the built-in functions do not satisfy your needs, you can
create custom functions in Python and add them to tuned in the form of plug-ins. Variables and built-in
functions are expanded at run time when the tuned profile is activated.

The variables can be specified in a separate file. You can, for example, add the following lines to
tuned.conf:

[variables]
include=/etc/tuned/my-variables.conf

CHAPTER 3. TUNED

23

[bootloader]
cmdline=isolcpus=${isolated_cores}

If you add isolated_cores=1,2 to the /etc/tuned/my-variables.conf file, the kernel boots
with the isolcpus=1,2 parameter.

Modifying Default System tuned Profiles
There are two ways of modifying the default system tuned profiles. You can either create a new tuned
profile directory, or copy the directory of a system profile and edit the profile as needed.

Procedure 3.1. Creating a New Tuned Profile Directory

1. In /etc/tuned/, create a new directory named the same as the profile you want to create:
/etc/tuned/my_profile_name/.

2. In the new directory, create a file named tuned.conf, and include the following lines at the top:

[main]
include=profile_name

3. Include your profile modifications. For example, to use the settings from the throughput-
performance profile with the value of vm.swappiness set to 5, instead of default 10, include
the following lines:

[main]
include=throughput-performance

[sysctl]
vm.swappiness=5

4. To activate the profile, run:

tuned-adm profile my_profile_name

Creating a directory with a new tuned.conf file enables you to keep all your profile modifications after
system tuned profiles are updated.

Alternatively, copy the directory with a system profile from /user/lib/tuned/ to /etc/tuned/. For
example:

cp -r /usr/lib/tuned/throughput-performance /etc/tuned

Then, edit the profile in /etc/tuned according to your needs. Note that if there are two profiles of the
same name, the profile located in /etc/tuned/ is loaded. The disadvantage of this approach is that if a
system profile is updated after a tuned upgrade, the changes will not be reflected in the now-outdated
modified version.

Resources
For more information, see Section A.4, “tuned” and Section A.5, “tuned-adm”. For detailed information on
using tuned and tuned-adm, see the tuned(8) and tuned-adm(1) manual pages.

Performance Tuning Guide

24

CHAPTER 4. TUNA
You can use the Tuna tool to adjust scheduler tunables, tune thread priority, IRQ handlers, and isolate
CPU cores and sockets. Tuna aims to reduce the complexity of performing tuning tasks.

After installing the tuna package, use the tuna command without any arguments to start the Tuna
graphical user interface (GUI). Use the tuna -h command to display available command-line interface
(CLI) options. Note that the tuna(8) manual page distinguishes between action and modifier options.

The Tuna GUI and CLI provide equivalent functionality. The GUI displays the CPU topology on one
screen to help you identify problems. The Tuna GUI also allows you to make changes to the running
threads, and see the results of those changes immediately. In the CLI, Tuna accepts multiple command-
line parameters and processes them sequentially. You can use such commands in application
initialization scripts as configuration commands.

The Monitoring tab of the Tuna GUI

IMPORTANT

Use the tuna --save=filename command with a descriptive file name to save the
current configuration. Note that this command does not save every option that Tuna can
change, but saves the kernel thread changes only. Any processes that are not currently
running when they are changed are not saved.

4.1. REVIEWING THE SYSTEM WITH TUNA

Before you make any changes, you can use Tuna to show you what is currently happening on the
system.

To view the current policies and priorities, use the tuna --show_threads command:

CHAPTER 4. TUNA

25

tuna --show_threads
 thread
pid SCHED_ rtpri affinity cmd
1 OTHER 0 0,1 init
2 FIFO 99 0 migration/0
3 OTHER 0 0 ksoftirqd/0
4 FIFO 99 0 watchdog/0

To show only a specific thread corresponding to a PID or matching a command name, add the --
threads option before --show_threads:

tuna --threads=pid_or_cmd_list --show_threads

The pid_or_cmd_list argument is a list of comma-separated PIDs or command-name patterns.

To view the current interrupt requests (IRQs) and their affinity, use the tuna --show_irqs command:

tuna --show_irqs
users affinity
0 timer 0
1 i8042 0
7 parport0 0

To show only a specific interrupt request corresponding to an IRQ number or matching an IRQ user
name, add the --irqs option before --show_irqs:

tuna --irqs=number_or_user_list --show_irqs

The number_or_user_list argument is a list of comma-separated IRQ numbers or user-name patterns.

4.2. TUNING CPUS WITH TUNA

Tuna commands can target individual CPUs. To list the CPUs on your system, see the Monitoring tab in
Tuna GUI or the /proc/cpuinfo file for detailed information.

To specify the list of CPUs to be affected by your command, use:

tuna --cpus=cpu_list --command

Isolating a CPU causes all tasks currently running on that CPU to move to the next available CPU. To
isolate a CPU, use:

tuna --cpus=cpu_list --isolate

Including a CPU allows threads to run on the specified CPU. To include a CPU, use:

tuna --cpus=cpu_list --include

The cpu_list argument is a list of comma-separated CPU numbers. For example, --cpus=0,2.

4.3. TUNING IRQS WITH TUNA

Performance Tuning Guide

26

To see the list of IRQs currently running on your system, see the Monitoring tab in Tuna GUI or the
/proc/interrpupts file. You can also use the tuna --show_irqs command.

To specify the list of IRQs to be affected by your command, use the --irqs parameter:

tuna --irqs=irq_list --command

To move an interrupt to a specified CPU, use the --move parameter:

tuna --irqs=irq_list --cpus=cpu_list --move

The irq_list argument is a list of comma-separated IRQ numbers or user-name patterns.

The cpu_list argument is a list of comma-separated CPU numbers. For example, --cpus=0,2.

For example, to target all interrupts whose names start with sfc1 and spread them over two CPUs:

tuna --irqs=sfc1* --cpus=7,8 --move --spread

To verify the changes you set, use the --show_irqs parameter both before and after modifying the
IRQs with the --move parameter:

tuna --irqs=128 --show_irqs

 # users affinity
 128 iwlwifi 0,1,2,3

tuna --irqs=128 --cpus=3 --move

tuna --irqs=128 --show_irqs

 # users affinity
 128 iwlwifi 3

This allows you to compare the state of the selected IRQs before and after your changes.

NOTE

Using the Tuna GUI might be more convenient in certain scenarios. Moving IRQs and
threads by specifying the CPUs they are to run on can be time-consuming and difficult
because it involves multiple steps of creating CPU masks. The Tuna GUI automates the
process. In the Tuna GUI, you can also select threads and IRQs and drag them over the
intended CPUs, which can make changing the topology easier.

4.4. TUNING TASKS WITH TUNA

To change policy and priority information on threads, use the --priority parameter:

tuna --threads=pid_or_cmd_list --priority=[policy:]rt_priority

The pid_or_cmd_list argument is a list of comma-separated PIDs or command-name patterns.

Set the policy to RR for round-robin, FIFO for first in, first out, or OTHER for the default policy.

CHAPTER 4. TUNA

27

For an overview of the scheduling policies, see Section 6.3.6, “Tuning Scheduling Policy”.

Set the rt_priority in the range 1–99. 1 is the lowest priority, and 99 is the highest priority.

For example:

tuna --threads=7861 --priority=RR:40

To verify the changes you set, use the --show_threads parameter both before and after the modifying
--priority parameter:

tuna --threads=sshd --show_threads --priority=RR:40 --show_threads

 thread ctxt_switches
 pid SCHED_ rtpri affinity voluntary nonvoluntary cmd
 1034 OTHER 0 0,1,2,3 12 17 sshd
 thread ctxt_switches
 pid SCHED_ rtpri affinity voluntary nonvoluntary cmd
 1034 RR 40 0,1,2,3 12 17 sshd

This allows you to compare the state of the selected threads before and after your changes.

4.5. EXAMPLES OF USING TUNA

Example 4.1. Assigning Tasks to Specific CPUs

The following example uses a system with four or more processors, and shows how to make all ssh
threads run on CPU 0 and 1, and all http threads on CPU 2 and 3.

tuna --cpus=0,1 --threads=ssh* --move --cpus=2,3 --threads=http* --
move

The above example command performs the following operations sequentially:

1. Select CPUs 0 and 1.

2. Select all threads that begin with ssh.

3. Move the selected threads to the selected CPUs. Tuna sets the affinity mask of threads
starting with ssh to the appropriate CPUs. The CPUs can be expressed numerically as 0
and 1, in hex mask as 0x3, or in binary as 11.

4. Reset the CPU list to 2 and 3.

5. Select all threads that begin with http.

6. Move the selected threads to the selected CPUs. Tuna sets the affinity mask of threads
starting with http to the appropriate CPUs. The CPUs can be expressed numerically as 2
and 3, in hex mask as 0xC, or in binary as 1100.

Example 4.2. Viewing Current Configurations

Performance Tuning Guide

28

The following example uses the --show_threads (-P) parameter to display the current
configuration, and then tests if the requested changes were made as expected.

tuna --threads=gnome-sc* \
 --show_threads \
 --cpus=0 \
 --move \
 --show_threads \
 --cpus=1 \
 --move \
 --show_threads \
 --cpus=+0 \
 --move \
 --show_threads

 thread ctxt_switches
 pid SCHED_ rtpri affinity voluntary nonvoluntary cmd
 3861 OTHER 0 0,1 33997 58 gnome-screensav
 thread ctxt_switches
 pid SCHED_ rtpri affinity voluntary nonvoluntary cmd
 3861 OTHER 0 0 33997 58 gnome-screensav
 thread ctxt_switches
 pid SCHED_ rtpri affinity voluntary nonvoluntary cmd
 3861 OTHER 0 1 33997 58 gnome-screensav
 thread ctxt_switches
 pid SCHED_ rtpri affinity voluntary nonvoluntary cmd
 3861 OTHER 0 0,1 33997 58 gnome-screensav

The above example command performs the following operations sequentially:

1. Select all threads that begin with gnome-sc.

2. Show the selected threads to enable the user to verify their affinity mask and RT priority.

3. Select CPU 0.

4. Move the gnome-sc threads to the selected CPU (CPU 0).

5. Show the result of the move.

6. Reset the CPU list to CPU 1.

7. Move the gnome-sc threads to the selected CPU (CPU 1).

8. Show the result of the move.

9. Add CPU 0 to the CPU list.

10. Move the gnome-sc threads to the selected CPUs (CPUs 0 and 1).

11. Show the result of the move.

CHAPTER 4. TUNA

29

CHAPTER 5. PERFORMANCE CO-PILOT (PCP)

5.1. PCP OVERVIEW AND RESOURCES

Red Hat Enterprise Linux 7 provides support for Performance Co-Pilot (PCP), a suite of tools, services,
and libraries for monitoring, visualizing, storing, and analyzing system-level performance measurements.
Its light-weight distributed architecture makes it particularly well-suited for centralized analysis of
complex systems. Performance metrics can be added using the Python, Perl, C++, and C interfaces.
Analysis tools can use the client APIs (Python, C++, C) directly, and rich web applications can explore all
available performance data using a JSON interface.

PCP allows the monitoring and management of both real-time data and the logging and retrieval of
historical data. You can use historical data to analyze patterns with issues by comparing live results with
archived data.

The Performance Metric Collection Daemon (pmcd) is responsible for collecting performance data on the
host system, and various client tools, such as pminfo or pmstat, can be used to retrieve, display,
archive, and process this data on the same host or over the network. The pcp package provides the
command-line tools and underlying functionality. The graphical tool requires the pcp-gui package.

For a list of system services and tools that are distributed with PCP, see Table A.1, “System Services
Distributed with Performance Co-Pilot in Red Hat Enterprise Linux 7” and Table A.2, “Tools Distributed
with Performance Co-Pilot in Red Hat Enterprise Linux 7”.

Resources

The manual page named PCPIntro serves as an introduction to Performance Co-Pilot. It
provides a list of available tools as well as a description of available configuration options and a
list of related manual pages. By default, comprehensive documentation is installed in the
/usr/share/doc/pcp-doc/ directory, notably the Performance Co-Pilot User's and
Administrator's Guide and Performance Co-Pilot Programmer's Guide.

For information on PCP, see the Index of Performance Co-Pilot (PCP) articles, solutions,
tutorials and white papers on the Red Hat Customer Portal.

If you need to determine what PCP tool has the functionality of an older tool you are already
familiar with, see the Side-by-side comparison of PCP tools with legacy tools Red Hat
Knowledgebase article.

See the official PCP documentation for an in-depth description of the Performance Co-Pilot and
its usage. If you want to start using PCP on Red Hat Enterprise Linux quickly, see the PCP
Quick Reference Guide. The official PCP website also contains a list of frequently asked
questions.

5.2. XFS FILE SYSTEM PERFORMANCE ANALYSIS WITH
PERFORMANCE CO-PILOT

This section describes PCP XFS performance metrics and how to use them. Once started, the
Performance Metric Collector Daemon (PMCD) begins collecting performance data from the installed
Performance Metric Domain Agents (PMDAs). PMDAs can be individually loaded or unloaded on the
system and are controlled by the PMCD on the same host. The XFS PMDA, which is part of the default
PCP installation, is used to gather performance metric data of XFS file systems in PCP.

Performance Tuning Guide

30

https://access.redhat.com/articles/1145953
https://access.redhat.com/articles/2372811
http://pcp.io/documentation.html
http://www.pcp.io/docs/guide.html
http://pcp.io/faq.html

For a list of system services and tools that are distributed with PCP, see Table A.1, “System Services
Distributed with Performance Co-Pilot in Red Hat Enterprise Linux 7” and Table A.2, “Tools Distributed
with Performance Co-Pilot in Red Hat Enterprise Linux 7”.

5.2.1. Installing XFS PMDA to Gather XFS Data with PCP

The XFS PMDA ships as part of the pcp package and is enabled by default on installation. To install
PCP, enter:

yum install pcp

To enable and start the PMDA service on the host machine after the pcp and pcp-gui packages are
installed, use the following commands:

systemctl enable pmcd.service

systemctl start pmcd.service

To query the PCP environment to verify that the PMCD process is running on the host and that the XFS
PMDA is listed as enabled in the configuration, enter:

pcp

Performance Co-Pilot configuration on workstation:

platform: Linux workstation 3.10.0-123.20.1.el7.x86_64 #1 SMP Thu Jan
29 18:05:33 UTC 2015 x86_64
hardware: 2 cpus, 2 disks, 1 node, 2048MB RAM
timezone: BST-1
services pmcd
pmcd: Version 3.10.6-1, 7 agents
pmda: root pmcd proc xfs linux mmv jbd2

Installing XFS PMDA Manually
If the XFS PMDA is not listed in PCP configuration readout, install the PMDA agent manually. The
PMDA installation script prompts you to specify the PMDA role: collector, monitor, or both.

The collector role allows the collection of performance metrics on the current system

The monitor role allows the system to monitor local systems, remote systems, or both.

The default option is both collector and monitor, which allows the XFS PMDA to operate correctly in
most scenarios.

To install XFS PMDA manually, change to the xfs directory:

cd /var/lib/pcp/pmdas/xfs/

In the xfs directory, enter:

xfs]# ./Install

You will need to choose an appropriate configuration for install of
the “xfs” Performance Metrics Domain Agent (PMDA).

CHAPTER 5. PERFORMANCE CO-PILOT (PCP)

31

 collector collect performance statistics on this system
 monitor allow this system to monitor local and/or remote systems
 both collector and monitor configuration for this system

Please enter c(ollector) or m(onitor) or (both) [b]
Updating the Performance Metrics Name Space (PMNS) ...
Terminate PMDA if already installed ...
Updating the PMCD control file, and notifying PMCD ...
Waiting for pmcd to terminate ...
Starting pmcd ...
Check xfs metrics have appeared ... 149 metrics and 149 values

5.2.2. Configuring and Examining XFS Performance Metrics

Examining Metrics with pminfo

With PCP installed and the XFS PMDA enabled, instructions are available in Section 5.2.1, “Installing
XFS PMDA to Gather XFS Data with PCP”, the easiest way to start looking at the performance metrics
available for PCP and XFS is to use the pminfo tool, which displays information about available
performance metrics. The command displays a list of all available metrics provided by the XFS PMDA.

To display a list of all available metrics provided by the XFS PMDA:

pminfo xfs

Use the following options to display information on selected metrics:

-t metric

Displays one-line help information describing the selected metric.

-T metric

Displays more verbose help text describing the selected metric.

-f metric

Displays the current reading of the performance value that corresponds to the metric.

You can use the -t, -T, and -f options with a group of metrics or an individual metric. Most metric data
is provided for each mounted XFS file system on the system at time of probing.

There are different groups of XFS metrics, which are arranged so that each different group is a new leaf
node from the root XFS metric, using a dot (.) as a separator. The leave node semantics (dots) applies
to all PCP metrics. For an overview of the types of metrics that are available in each of the groups, see
Table A.3, “PCP Metric Groups for XFS”.

Additionally, the XFS documentation contains a section on monitoring XFS file systems: Chapter 13. XFS
Monitoring.

Example 5.1. Using the pminfo Tool to Examine XFS Read and Write Metrics

To display one-line help information describing the xfs.write_bytes metric:

Performance Tuning Guide

32

http://xfs.org/docs/xfsdocs-xml-dev/XFS_User_Guide//tmp/en-US/html/xfs-monitoring.html

pminfo -t xfs.write_bytes

xfs.write_bytes [number of bytes written in XFS file system write
operations]

To display more verbose help text describing the xfs.read_bytes metric:

pminfo -T xfs.read_bytes

xfs.read_bytes
Help:
This is the number of bytes read via read(2) system calls to files in
XFS file systems. It can be used in conjunction with the read_calls
count to calculate the average size of the read operations to file in
XFS file systems.

To obtain the current reading of the performance value that corresponds to the xfs.read_bytes
metric:

pminfo -f xfs.read_bytes

xfs.read_bytes
 value 4891346238

Configuring Metrics with pmstore

With PCP, you can modify the values of certain metrics, especially if the metric acts as a control variable,
for example the xfs.control.reset metric. To modify a metric value, use the pmstore tool.

Example 5.2. Using pmstore to Reset the xfs.control.reset Metric

This example shows how to use pmstore with the xfs.control.reset metric to reset the
recorded counter values for the XFS PMDA back to zero.

$ pminfo -f xfs.write

xfs.write
 value 325262

pmstore xfs.control.reset 1

xfs.control.reset old value=0 new value=1

$ pminfo -f xfs.write

xfs.write
 value 0

5.2.3. Examining XFS Metrics Available per File System

Starting with Red Hat Enterprise Linux 7.3, PCP enables XFS PMDA to allow the reporting of certain

CHAPTER 5. PERFORMANCE CO-PILOT (PCP)

33

XFS metrics per each of the mounted XFS file systems. This makes it easier to pinpoint specific mounted
file system issues and evaluate performance. For an overview of the types of metrics available per file
system in each of the groups, see Table A.4, “PCP Metric Groups for XFS per Device”.

Example 5.3. Obtaining per-Device XFS Metrics with pminfo

The pminfo command provides per-device XFS metrics that give instance values for each mounted
XFS file system.

pminfo -f -t xfs.perdev.read xfs.perdev.write

xfs.perdev.read [number of XFS file system read operations]
inst [0 or "loop1"] value 0
inst [0 or "loop2"] value 0

xfs.perdev.write [number of XFS file system write operations]
inst [0 or "loop1"] value 86
inst [0 or "loop2"] value 0

5.2.4. Logging Performance Data with pmlogger

PCP allows you to log performance metric values that can be replayed later and used for a retrospective
performance analysis. Use the pmlogger tool to create archived logs of selected metrics on the system.

With pmlogger, you can specify which metrics are recorded on the system and how often. The default
pmlogger configuration file is /var/lib/pcp/config/pmlogger/config.default. The
configuration file specifies which metrics are logged by the primary logging instance.

To log metric values on the local machine with pmlogger, start a primary logging instance:

systemctl start pmlogger.service

systemctl enable pmlogger.service

When pmlogger is enabled and a default configuration file is set, a pmlogger line is included in the PCP
configuration:

pcp

Performance Co-Pilot configuration on workstation:

platform: Linux workstation 3.10.0-123.20.1.el7.x86_64 #1 SMP Thu Jan
[...]
pmlogger: primary logger:/var/log/pcp/pmlogger/workstation/20160820.10.15

Modifying the pmlogger Configuration File with pmlogconf
When the pmlogger service is running, PCP logs a default set of metrics on the host. You can use the
pmlogconf utility to check the default configuration, and enable XFS logging groups as needed.
Important XFS groups to enable include the XFS information, XFS data, and log I/O traffic groups.

Follow pmlogconf prompts to enable or disable groups of related performance metrics, and to control
the logging interval for each enabled group. Group selection is made by pressing y (yes) or n (no) in

Performance Tuning Guide

34

response to the prompt. To create or modify the generic PCP archive logger configuration file with
pmlogconf, enter:

pmlogconf -r /var/lib/pcp/config/pmlogger/config.default

Modifying the pmlogger Configuration File Manually
You can edit the pmlogger configuration file manually and add specific metrics with given intervals to
create a tailored logging configuration.

Example 5.4. The pmlogger Configuration File with XFS Metrics

The following example shows an extract of the pmlogger config.default file with some specific
XFS metrics added.

It is safe to make additions from here on ...
#

log mandatory on every 5 seconds {
 xfs.write
 xfs.write_bytes
 xfs.read
 xfs.read_bytes
}

log mandatory on every 10 seconds {
 xfs.allocs
 xfs.block_map
 xfs.transactions
 xfs.log

}

[access]
disallow * : all;
allow localhost : enquire;

Replaying the PCP Log Archives
After recording metric data, you can replay the PCP log archives on the system in the following ways:

You can export the logs to text files and import them into spreadsheets by using PCP utilities
such as pmdumptext, pmrep, or pmlogsummary.

You can replay the data in the PCP Charts application and use graphs to visualize the
retrospective data alongside live data of the system. See Section 5.2.5, “Visual Tracing with
PCP Charts”.

You can use the pmdumptext tool to view the log files. With pmdumptext, you can parse the selected
PCP log archive and export the values into an ASCII table. The pmdumptext tool enables you to dump
the entire archive log, or only select metric values from the log by specifying individual metrics on the
command line.

Example 5.5. Displaying a Specific XFS Metric Log Information

CHAPTER 5. PERFORMANCE CO-PILOT (PCP)

35

For example, to show data on the xfs.perdev.log metric collected in an archive at a 5 second
interval and display all headers:

$ pmdumptext -t 5seconds -H -a 20170605 xfs.perdev.log.writes

Time local::xfs.perdev.log.writes["/dev/mapper/fedora-home"]
local::xfs.perdev.log.writes["/dev/mapper/fedora-root"]
? 0.000 0.000
none count / second count / second
Mon Jun 5 12:28:45 ? ?
Mon Jun 5 12:28:50 0.000 0.000
Mon Jun 5 12:28:55 0.200 0.200
Mon Jun 5 12:29:00 6.800 1.000

For more information, see the pmdumptext(1) manual page, which is available from the pcp-doc
package.

5.2.5. Visual Tracing with PCP Charts

To be able to use the graphical PCP Charts application, install the pcp-gui package:

yum install pcp-gui

You can use the PCP Charts application to plot performance metric values into graphs. The PCP Charts
application allows multiple charts to be displayed simultaneously. The metrics are sourced from one or
more live hosts with alternative options to use metric data from PCP log archives as a source of
historical data. To launch PCP Charts from the command line, use the pmchart command.

After starting PCP Charts, the GUI appears:

Performance Tuning Guide

36

The PCP Charts application

The pmtime server settings are located at the bottom. The start and pause button allows you to
control the interval in which the metric data is polled, and if you are using historical data, the date and
time for the metrics.

Go to File → New Chart to select metric from both the local machine and remote machines by
specifying their host name or address. Then, select performance metrics from the remote hosts.
Advanced configuration options include the ability to manually set the axis values for the chart, and to
manually choose the color of the plots.

There are multiple options to take images or record the views created in PCP Charts:

Click File → Export to save an image of the current view.

Click Record → Start to start a recording. Click Record → Stop to stop the recording. After
stopping the recording, the recorded metrics are archived to be viewed later.

You can customize the PCP Charts interface to display the data from performance metrics in multiple
ways, including:

line plot

bar graphs

utilization graphs

In PCP Charts, the main configuration file, known as the view, allows the metadata associated with one
or more charts to be saved. This metadata describes all chart aspects, including the metrics used and the
chart columns. You can create a custom view configuration, save it by clicking File → Save View, and
load the view configuration later. For more information about view configuration files and their syntax,
see the pmchart(1) manual page.

CHAPTER 5. PERFORMANCE CO-PILOT (PCP)

37

Example 5.6. Stacking Chart Graph in PCP Charts View Configuration

The example PCP Charts view configuration file describes a stacking chart graph showing the total
number of bytes read and written to the given XFS file system loop1.

#kmchart
version 1

chart title "Filesystem Throughput /loop1" style stacking antialiasing
off
 plot legend "Read rate" metric xfs.read_bytes instance "loop1"
 plot legend "Write rate" metric xfs.write_bytes instance "loop1"

5.3. PERFORMING MINIMAL PCP SETUP TO GATHER FILE SYSTEM
DATA

The following procedure provides instructions on how to install a minimal PCP setup to collect statistics
on Red Hat Enterprise Linux. The minimal setup involves adding the minimum number of packages on a
production system needed to gather data for further analysis.

The resulting tar.gz archive of the pmlogger output can be analyzed by using various PCP tools,
such as PCP Charts, and compared with other sources of performance information.

1. Install the pcp package:

yum install pcp

2. Run the pmlogconf utility to update the pmlogger configuration and enable the XFS
information, XFS data, and log I/O traffic groups:

pmlogconf -r /var/lib/pcp/config/pmlogger/config.default

3. Start the pmlogger service:

systemctl start pmcd.service

systemctl start pmlogger.service

4. Perform operations on the XFS file system.

5. Stop the pmlogger service:

systemctl stop pmcd.service

systemctl stop pmlogger.service

6. Collect the output and save it to a tar.gz file named based on the hostname and the current
date and time:

cd /var/log/pcp/pmlogger/

Performance Tuning Guide

38

tar -czf $(hostname).$(date +%F-%Hh%M).pcp.tar.gz $(hostname)

CHAPTER 5. PERFORMANCE CO-PILOT (PCP)

39

CHAPTER 6. CPU
This chapter outlines CPU hardware details and configuration options that affect application performance
in Red Hat Enterprise Linux 7. Section 6.1, “Considerations” discusses the CPU related factors that
affect performance. Section 6.2, “Monitoring and Diagnosing Performance Problems” teaches you how
to use Red Hat Enterprise Linux 7 tools to diagnose performance problems related to CPU hardware or
configuration details. Section 6.3, “Configuration Suggestions” discusses the tools and strategies you
can use to solve CPU related performance problems in Red Hat Enterprise Linux 7.

6.1. CONSIDERATIONS

Read this section to gain an understanding of how system and application performance is affected by the
following factors:

How processors are connected to each other and to related resources like memory.

How processors schedule threads for execution.

How processors handle interrupts in Red Hat Enterprise Linux 7.

6.1.1. System Topology

In modern computing, the idea of a central processing unit is a misleading one, as most modern systems
have multiple processors. How these processors are connected to each other and to other system
resources — the topology of the system — can greatly affect system and application performance, and
the tuning considerations for a system.

There are two primary types of topology used in modern computing:

Symmetric Multi-Processor (SMP) topology

SMP topology allows all processors to access memory in the same amount of time. However,
because shared and equal memory access inherently forces serialized memory accesses from all the
CPUs, SMP system scaling constraints are now generally viewed as unacceptable. For this reason,
practically all modern server systems are NUMA machines.

Non-Uniform Memory Access (NUMA) topology

NUMA topology was developed more recently than SMP topology. In a NUMA system, multiple
processors are physically grouped on a socket. Each socket has a dedicated area of memory, and
processors that have local access to that memory are referred to collectively as a node.

Processors on the same node have high speed access to that node's memory bank, and slower
access to memory banks not on their node. Therefore, there is a performance penalty to accessing
non-local memory.

Given this performance penalty, performance sensitive applications on a system with NUMA topology
should access memory that is on the same node as the processor executing the application, and
should avoid accessing remote memory wherever possible.

When tuning application performance on a system with NUMA topology, it is therefore important to
consider where the application is being executed, and which memory bank is closest to the point of
execution.

In a system with NUMA topology, the /sys file system contains information about how processors,
memory, and peripheral devices are connected. The /sys/devices/system/cpu directory

Performance Tuning Guide

40

contains details about how processors in the system are connected to each other. The
/sys/devices/system/node directory contains information about NUMA nodes in the system,
and the relative distances between those nodes.

6.1.1.1. Determining System Topology

There are a number of commands that can help you understand the topology of your system. The
numactl --hardware command gives an overview of your system's topology.

$ numactl --hardware
available: 4 nodes (0-3)
node 0 cpus: 0 4 8 12 16 20 24 28 32 36
node 0 size: 65415 MB
node 0 free: 43971 MB
node 1 cpus: 2 6 10 14 18 22 26 30 34 38
node 1 size: 65536 MB
node 1 free: 44321 MB
node 2 cpus: 1 5 9 13 17 21 25 29 33 37
node 2 size: 65536 MB
node 2 free: 44304 MB
node 3 cpus: 3 7 11 15 19 23 27 31 35 39
node 3 size: 65536 MB
node 3 free: 44329 MB
node distances:
node 0 1 2 3
 0: 10 21 21 21
 1: 21 10 21 21
 2: 21 21 10 21
 3: 21 21 21 10

The lscpu command, provided by the util-linux package, gathers information about the CPU
architecture, such as the number of CPUs, threads, cores, sockets, and NUMA nodes.

$ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 40
On-line CPU(s) list: 0-39
Thread(s) per core: 1
Core(s) per socket: 10
Socket(s): 4
NUMA node(s): 4
Vendor ID: GenuineIntel
CPU family: 6
Model: 47
Model name: Intel(R) Xeon(R) CPU E7- 4870 @ 2.40GHz
Stepping: 2
CPU MHz: 2394.204
BogoMIPS: 4787.85
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K

CHAPTER 6. CPU

41

L3 cache: 30720K
NUMA node0 CPU(s): 0,4,8,12,16,20,24,28,32,36
NUMA node1 CPU(s): 2,6,10,14,18,22,26,30,34,38
NUMA node2 CPU(s): 1,5,9,13,17,21,25,29,33,37
NUMA node3 CPU(s): 3,7,11,15,19,23,27,31,35,39

The lstopo command, provided by the hwloc package, creates a graphical representation of your
system. The lstopo-no-graphics command provides detailed textual output.

Performance Tuning Guide

42

Output of lstopo command

6.1.2. Scheduling

CHAPTER 6. CPU

43

In Red Hat Enterprise Linux, the smallest unit of process execution is called a thread. The system
scheduler determines which processor runs a thread, and for how long the thread runs. However,
because the scheduler's primary concern is to keep the system busy, it may not schedule threads
optimally for application performance.

For example, say an application on a NUMA system is running on Node A when a processor on Node B
becomes available. To keep the processor on Node B busy, the scheduler moves one of the application's
threads to Node B. However, the application thread still requires access to memory on Node A. Because
the thread is now running on Node B, and Node A memory is no longer local to the thread, it will take
longer to access. It may take longer for the thread to finish running on Node B than it would have taken
to wait for a processor on Node A to become available, and to execute the thread on the original node
with local memory access.

Performance sensitive applications often benefit from the designer or administrator determining where
threads are run. For details about how to ensure threads are scheduled appropriately for the needs of
performance sensitive applications, see Section 6.3.6, “Tuning Scheduling Policy”.

6.1.2.1. Kernel Ticks

In previous versions of Red Hat Enterprise Linux, the Linux kernel interrupted each CPU on a regular
basis to check what work needed to be done. It used the results to make decisions about process
scheduling and load balancing. This regular interruption was known as a kernel tick.

This tick occurred regardless of whether there was work for the core to do. This meant that even idle
cores were forced into higher power states on a regular basis (up to 1000 times per second) to respond
to the interrupts. This prevented the system from effectively using deep sleep states included in recent
generations of x86 processors.

In Red Hat Enterprise Linux 6 and 7, by default, the kernel no longer interrupts idle CPUs, which tend to
be in low power states. This behavior is known as the tickless kernel. Where one or fewer tasks are
running, periodic interrupts have been replaced with on-demand interrupts, allowing CPUs to remain in
an idle or low power state for longer, and reducing power usage.

Red Hat Enterprise Linux 7 offers a dynamic tickless option (nohz_full) to further improve
determinism by reducing kernel interference with user-space tasks. This option can be enabled on
specified cores with the nohz_full kernel parameter. When this option is enabled on a core, all
timekeeping activities are moved to non-latency-sensitive cores. This can be useful for high performance
computing and realtime computing workloads where user-space tasks are particularly sensitive to
microsecond-level latencies associated with the kernel timer tick.

For details on how to enable the dynamic tickless behavior in Red Hat Enterprise Linux 7, see
Section 6.3.1, “Configuring Kernel Tick Time”.

6.1.3. Interrupt Request (IRQ) Handling

An interrupt request or IRQ is a signal for immediate attention sent from a piece of hardware to a
processor. Each device in a system is assigned one or more IRQ numbers to allow it to send unique
interrupts. When interrupts are enabled, a processor that receives an interrupt request will immediately
pause execution of the current application thread in order to address the interrupt request.

Because they halt normal operation, high interrupt rates can severely degrade system performance. It is
possible to reduce the amount of time taken by interrupts by configuring interrupt affinity or by sending a
number of lower priority interrupts in a batch (coalescing a number of interrupts).

Performance Tuning Guide

44

For more information about tuning interrupt requests, see Section 6.3.7, “Setting Interrupt Affinity” or
Section 6.3.8, “Configuring CPU, Thread, and Interrupt Affinity with Tuna”. For information specific to
network interrupts, see Chapter 9, Networking.

6.2. MONITORING AND DIAGNOSING PERFORMANCE PROBLEMS

Red Hat Enterprise Linux 7 provides a number of tools that are useful for monitoring system performance
and diagnosing performance problems related to processors and their configuration. This section
outlines the available tools and gives examples of how to use them to monitor and diagnose processor
related performance issues.

6.2.1. turbostat

Turbostat prints counter results at specified intervals to help administrators identify unexpected behavior
in servers, such as excessive power usage, failure to enter deep sleep states, or system management
interrupts (SMIs) being created unnecessarily.

The turbostat tool is part of the kernel-tools package. It is supported for use on systems with AMD64
and Intel® 64 processors. It requires root privileges to run, and processor support for invariant time
stamp counters, and APERF and MPERF model specific registers.

For usage examples, see the man page:

$ man turbostat

6.2.2. numastat

IMPORTANT

This tool received substantial updates in the Red Hat Enterprise Linux 6 life cycle. While
the default output remains compatible with the original tool written by Andi Kleen,
supplying any options or parameters to numastat significantly changes the format of its
output.

The numastat tool displays per-NUMA node memory statistics for processes and the operating system
and shows administrators whether process memory is spread throughout a system or centralized on
specific nodes.

Cross reference numastat output with per-processor top output to confirm that process threads are
running on the same node from which process memory is allocated.

Numastat is provided by the numactl package. For further information about numastat output, see the
man page:

$ man numastat

6.2.3. /proc/interrupts

The /proc/interrupts file lists the number of interrupts sent to each processor from a particular I/O
device. It displays the interrupt request (IRQ) number, the number of that type of interrupt request
handled by each processor in the system, the type of interrupt sent, and a comma-separated list of
devices that respond to the listed interrupt request.

CHAPTER 6. CPU

45

If a particular application or device is generating a large number of interrupt requests to be handled by a
remote processor, its performance is likely to suffer. In this case, poor performance can be alleviated by
having a processor on the same node as the application or device handle the interrupt requests. For
details on how to assign interrupt handling to a specific processor, see Section 6.3.7, “Setting Interrupt
Affinity”.

6.2.4. Cache and Memory Bandwidth Monitoring with pqos

The pqos utility, which is available from the intel-cmt-cat package, enables you to monitor CPU cache
and memory bandwidth on recent Intel processors.

The pqos utility provides a cache and memory monitoring tool similar to the top utility. It monitors:

The instructions per cycle (IPC).

The count of last level cache MISSES.

The size in kilobytes that the program executing in a given CPU occupies in the LLC.

The bandwidth to local memory (MBL).

The bandwidth to remote memory (MBR).

Use the following command to start the monitoring tool:

pqos --mon-top

Items in the output are sorted by the highest LLC occupancy.

Additional Resources

For a general overview of the pqos utility and the related processor features, see Section 2.14,
“pqos”.

For an example of how using CAT can minimize the impact of a noisy neighbor virtual machine
on the network performance of Data Plane Development Kit (DPDK), see the Increasing
Platform Determinism with Platform Quality of Service for the Data Plane Development Kit Intel
white paper.

6.3. CONFIGURATION SUGGESTIONS

Red Hat Enterprise Linux provides a number of tools to assist administrators in configuring the system.
This section outlines the available tools and provides examples of how they can be used to solve
processor related performance problems in Red Hat Enterprise Linux 7.

6.3.1. Configuring Kernel Tick Time

By default, Red Hat Enterprise Linux 7 uses a tickless kernel, which does not interrupt idle CPUs in order
to reduce power usage and allow newer processors to take advantage of deep sleep states.

Red Hat Enterprise Linux 7 also offers a dynamic tickless option (disabled by default), which is useful for
very latency-sensitive workloads, such as high performance computing or realtime computing.

To enable dynamic tickless behavior in certain cores, specify those cores on the kernel command line
with the nohz_full parameter. On a 16 core system, specifying nohz_full=1-15 enables dynamic

Performance Tuning Guide

46

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/increasing-platform-determinism-pqos-dpdk-paper.pdf

tickless behavior on cores 1 through 15, moving all timekeeping to the only unspecified core (core 0).
This behavior can be enabled either temporarily at boot time, or persistently in the
/etc/default/grub file. For persistent behavior, run the grub2-mkconfig -o
/boot/grub2/grub.cfg command to save your configuration.

Enabling dynamic tickless behavior does require some manual administration.

When the system boots, you must manually move rcu threads to the non-latency-sensitive core,
in this case core 0.

for i in `pgrep rcu[^c]` ; do taskset -pc 0 $i ; done

Use the isolcpus parameter on the kernel command line to isolate certain cores from user-
space tasks.

Optionally, set CPU affinity for the kernel's write-back bdi-flush threads to the housekeeping
core:

echo 1 > /sys/bus/workqueue/devices/writeback/cpumask

Verify that the dynamic tickless configuration is working correctly by executing the following command,
where stress is a program that spins on the CPU for 1 second.

perf stat -C 1 -e irq_vectors:local_timer_entry taskset -c 1 stress -t 1
-c 1

One possible replacement for stress is a script that runs something like while :; do d=1; done.

The default kernel timer configuration shows 1000 ticks on a busy CPU:

perf stat -C 1 -e irq_vectors:local_timer_entry taskset -c 1 stress -t 1
-c 1
1000 irq_vectors:local_timer_entry

With the dynamic tickless kernel configured, you should see 1 tick instead:

perf stat -C 1 -e irq_vectors:local_timer_entry taskset -c 1 stress -t 1
-c 1
1 irq_vectors:local_timer_entry

6.3.2. Setting Hardware Performance Policy (x86_energy_perf_policy)

The x86_energy_perf_policy tool allows administrators to define the relative importance of performance
and energy efficiency. This information can then be used to influence processors that support this feature
when they select options that trade off between performance and energy efficiency.

By default, it operates on all processors in performance mode. It requires processor support, which is
indicated by the presence of CPUID.06H.ECX.bit3, and must be run with root privileges.

x86_energy_perf_policy is provided by the kernel-tools package. For details of how to use
x86_energy_perf_policy, see Section A.9, “x86_energy_perf_policy” or refer to the man page:

$ man x86_energy_perf_policy

CHAPTER 6. CPU

47

6.3.3. Setting Process Affinity with taskset

The taskset tool is provided by the util-linux package. Taskset allows administrators to retrieve and set
the processor affinity of a running process, or launch a process with a specified processor affinity.

IMPORTANT

taskset does not guarantee local memory allocation. If you require the additional
performance benefits of local memory allocation, Red Hat recommends using numactl
instead of taskset.

For more information about taskset, see Section A.15, “taskset” or the man page:

$ man taskset

6.3.4. Managing NUMA Affinity with numactl

Administrators can use numactl to run a process with a specified scheduling or memory placement
policy. Numactl can also set a persistent policy for shared memory segments or files, and set the
processor affinity and memory affinity of a process.

In a system with NUMA topology, a processor's memory access slows as the distance between the
processor and the memory bank increases. Therefore, it is important to configure applications that are
sensitive to performance so that they allocate memory from the closest possible memory bank. It is best
to use memory and CPUs that are in the same NUMA node.

Multi-threaded applications that are sensitive to performance may benefit from being configured to
execute on a specific NUMA node rather than a specific processor. Whether this is suitable depends on
your system and the requirements of your application. If multiple application threads access the same
cached data, then configuring those threads to execute on the same processor may be suitable.
However, if multiple threads that access and cache different data execute on the same processor, each
thread may evict cached data accessed by a previous thread. This means that each thread 'misses' the
cache, and wastes execution time fetching data from memory and replacing it in the cache. You can use
the perf tool, as documented in Section A.6, “perf”, to check for an excessive number of cache misses.

Numactl provides a number of options to assist you in managing processor and memory affinity. See
Section A.11, “numastat” or the man page for details:

$ man numactl

NOTE

The numactl package includes the libnuma library. This library offers a simple
programming interface to the NUMA policy supported by the kernel, and can be used for
more fine-grained tuning than the numactl application. For more information, see the man
page:

$ man numa

6.3.5. Automatic NUMA Affinity Management with numad

Performance Tuning Guide

48

numad is an automatic NUMA affinity management daemon. It monitors NUMA topology and resource
usage within a system in order to dynamically improve NUMA resource allocation and management.

numad also provides a pre-placement advice service that can be queried by various job management
systems to provide assistance with the initial binding of CPU and memory resources for their processes.
This pre-placement advice is available regardless of whether numad is running as an executable or a
service.

For details of how to use numad, see Section A.13, “numad” or refer to the man page:

$ man numad

6.3.6. Tuning Scheduling Policy

The Linux scheduler implements a number of scheduling policies, which determine where and for how
long a thread runs. There are two major categories of scheduling policies: normal policies and realtime
policies. Normal threads are used for tasks of normal priority. Realtime policies are used for time-
sensitive tasks that must complete without interruptions.

Realtime threads are not subject to time slicing. This means they will run until they block, exit, voluntarily
yield, or are pre-empted by a higher priority thread. The lowest priority realtime thread is scheduled
before any thread with a normal policy.

6.3.6.1. Scheduling Policies

6.3.6.1.1. Static Priority Scheduling with SCHED_FIFO

SCHED_FIFO (also called static priority scheduling) is a realtime policy that defines a fixed priority for
each thread. This policy allows administrators to improve event response time and reduce latency, and is
recommended for time sensitive tasks that do not run for an extended period of time.

When SCHED_FIFO is in use, the scheduler scans the list of all SCHED_FIFO threads in priority order
and schedules the highest priority thread that is ready to run. The priority level of a SCHED_FIFO thread
can be any integer from 1 to 99, with 99 treated as the highest priority. Red Hat recommends starting at
a low number and increasing priority only when you identify latency issues.

WARNING

Because realtime threads are not subject to time slicing, Red Hat does not
recommend setting a priority of 99. This places your process at the same priority
level as migration and watchdog threads; if your thread goes into a computational
loop and these threads are blocked, they will not be able to run. Systems with a
single processor will eventually hang in this situation.

Administrators can limit SCHED_FIFO bandwidth to prevent realtime application programmers from
initiating realtime tasks that monopolize the processor.

/proc/sys/kernel/sched_rt_period_us

CHAPTER 6. CPU

49

This parameter defines the time period in microseconds that is considered to be one hundred percent
of processor bandwidth. The default value is 1000000 µs, or 1 second.

/proc/sys/kernel/sched_rt_runtime_us

This parameter defines the time period in microseconds that is devoted to running realtime threads.
The default value is 950000 µs, or 0.95 seconds.

6.3.6.1.2. Round Robin Priority Scheduling with SCHED_RR

SCHED_RR is a round-robin variant of SCHED_FIFO. This policy is useful when multiple threads need to
run at the same priority level.

Like SCHED_FIFO, SCHED_RR is a realtime policy that defines a fixed priority for each thread. The
scheduler scans the list of all SCHED_RR threads in priority order and schedules the highest priority
thread that is ready to run. However, unlike SCHED_FIFO, threads that have the same priority are
scheduled round-robin style within a certain time slice.

You can set the value of this time slice in milliseconds with the sched_rr_timeslice_ms kernel
parameter (/proc/sys/kernel/sched_rr_timeslice_ms). The lowest value is 1 millisecond.

6.3.6.1.3. Normal Scheduling with SCHED_OTHER

SCHED_OTHER is the default scheduling policy in Red Hat Enterprise Linux 7. This policy uses the
Completely Fair Scheduler (CFS) to allow fair processor access to all threads scheduled with this policy.
This policy is most useful when there are a large number of threads or data throughput is a priority, as it
allows more efficient scheduling of threads over time.

When this policy is in use, the scheduler creates a dynamic priority list based partly on the niceness
value of each process thread. Administrators can change the niceness value of a process, but cannot
change the scheduler's dynamic priority list directly.

For details about changing process niceness, see the Red Hat Enterprise Linux 7 System Administrator's
Guide.

6.3.6.2. Isolating CPUs

You can isolate one or more CPUs from the scheduler with the isolcpus boot parameter. This
prevents the scheduler from scheduling any user-space threads on this CPU.

Once a CPU is isolated, you must manually assign processes to the isolated CPU, either with the CPU
affinity system calls or the numactl command.

To isolate the third and sixth to eighth CPUs on your system, add the following to the kernel command
line:

isolcpus=2,5-7

You can also use the Tuna tool to isolate a CPU. Tuna can isolate a CPU at any time, not just at boot
time. However, this method of isolation is subtly different from the isolcpus parameter, and does not
currently achieve the performance gains associated with isolcpus. See Section 6.3.8, “Configuring
CPU, Thread, and Interrupt Affinity with Tuna” for more details about this tool.

Performance Tuning Guide

50

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/index

6.3.7. Setting Interrupt Affinity

Interrupt requests have an associated affinity property, smp_affinity, which defines the processors
that will handle the interrupt request. To improve application performance, assign interrupt affinity and
process affinity to the same processor, or processors on the same core. This allows the specified
interrupt and application threads to share cache lines.

The interrupt affinity value for a particular interrupt request is stored in the associated
/proc/irq/irq_number/smp_affinity file. The smp_affinity value is stored as a hexadecimal
bit mask representing all processors in the system. The default value is f, meaning that an interrupt
request can be handled on any processor in the system. Setting this value to 1 means that only
processor 0 can handle the interrupt.

On systems with more than 32 processors, you must delimit smp_affinity values for discrete 32 bit
groups. For example, if you want only the first 32 processors of a 64 processor system to service an
interrupt request, use:

echo 0xffffffff,00000000 > /proc/irq/irq_number/smp_affinity

Alternatively, if the BIOS exports its NUMA topology, the irqbalance service can use that information
to serve interrupt requests on the node that is local to the hardware requesting service. For details about
irqbalance, see Section A.1, “irqbalance”

Starting with Red Hat Enterprise Linux 7.5, the system configures the optimal interrupt affinity for certain
devices and their drivers automatically. You can no longer configure their affinity manually. This applies
to the following devices:

Devices using the be2iscsi driver

NVMe PCI devices

NOTE

On systems that support interrupt steering, modifying the smp_affinity property of an
interrupt request sets up the hardware so that the decision to service an interrupt with a
particular processor is made at the hardware level with no intervention from the kernel.
For more information about interrupt steering, see Chapter 9, Networking.

6.3.8. Configuring CPU, Thread, and Interrupt Affinity with Tuna

Tuna is a tool for tuning running processes and can control CPU, thread, and interrupt affinity, and also
provides a number of actions for each type of entity it can control. For information about Tuna, see
Chapter 4, Tuna.

CHAPTER 6. CPU

51

CHAPTER 7. MEMORY
This chapter outlines the memory management capabilities of Red Hat Enterprise Linux 7. Section 7.1,
“Considerations” discusses memory related factors that affect performance. Section 7.2, “Monitoring and
Diagnosing Performance Problems” teaches you how to use Red Hat Enterprise Linux 7 tools to
diagnose performance problems related to memory utilization or configuration details. Section 7.5,
“Configuring System Memory Capacity” and Section 7.3, “Configuring HugeTLB Huge Pages” discuss
the tools and strategies you can use to solve memory related performance problems in Red Hat
Enterprise Linux 7.

7.1. CONSIDERATIONS

By default, Red Hat Enterprise Linux 7 is optimized for moderate workloads. If your application or
workload requires a large amount of memory, changing the way your system manages virtual memory
may improve the performance of your application.

7.1.1. Larger Page Size

Physical memory is managed in chunks called pages. On most architectures supported by Red Hat
Enterprise Linux 7, the default size of a memory page is 4 KB. This default page size has proved to be
suitable for general-purpose operating systems, such as Red Hat Enterprise Linux 7, which support
many different kinds of workloads.

However, specific applications can benefit from using larger page sizes in certain cases. For example,
an application that works with a large and relatively fixed data set of hundreds of megabytes or even
dozens of gigabytes can have performance issues when using 4 KB pages. Such data sets can require
hundreds of thousands of 4 KB pages, which can lead to overhead in the operating system and the CPU.

Red Hat Enterprise Linux 7 enables the use of larger page sizes for applications working with big data
sets. Using larger page sizes can improve the performance of such applications.

Two different large page features are available in Red Hat Enterprise Linux 7: the HugeTLB feature, also
called static huge pages in this guide, and the Transparent Huge Page feature.

7.1.2. Translation Lookaside Buffer Size

Reading address mappings from the page table is time-consuming and resource-expensive, so CPUs
are built with a cache for recently-used addresses: the Translation Lookaside Buffer (TLB). However, the
default TLB can only cache a certain number of address mappings. If a requested address mapping is
not in the TLB (that is, the TLB is missed), the system still needs to read the page table to determine the
physical to virtual address mapping.

Because of the relationship between application memory requirements and the size of pages used to
cache address mappings, applications with large memory requirements are more likely to suffer
performance degradation from TLB misses than applications with minimal memory requirements. It is
therefore important to avoid TLB misses wherever possible.

Both HugeTLB and Transparent Huge Page features allow applications to use pages larger than 4 KB.
This allows addresses stored in the TLB to reference more memory, which reduces TLB misses and
improves application performance.

7.2. MONITORING AND DIAGNOSING PERFORMANCE PROBLEMS

Red Hat Enterprise Linux 7 provides a number of tools that are useful for monitoring system performance

Performance Tuning Guide

52

and diagnosing performance problems related to system memory. This section outlines the available
tools and gives examples of how to use them to monitor and diagnose memory related performance
issues.

7.2.1. Monitoring Memory Usage with vmstat

Vmstat, provided by the procps-ng package, outputs reports on your system's processes, memory,
paging, block input/output, interrupts, and CPU activity. It provides an instantaneous report of the
average of these events since the machine was last booted, or since the previous report.

The following command displays a table of various event counters and memory statistics.

$ vmstat -s

For further details of how to use vmstat, see Section A.8, “vmstat” or the man page:

$ man vmstat

7.2.2. Profiling Application Memory Usage with Valgrind

Valgrind is a framework that provides instrumentation to user-space binaries. It ships with a number of
tools that can be used to profile and analyze program performance. The valgrind tools outlined in this
section can help you to detect memory errors such as uninitialized memory use and improper memory
allocation or deallocation.

To use valgrind or any of its tools, install the valgrind package:

yum install valgrind

7.2.2.1. Profiling Memory Usage with Memcheck

Memcheck is the default valgrind tool. It detects and reports on a number of memory errors that can be
difficult to detect and diagnose, such as:

Memory access that should not occur

Undefined or uninitialized value use

Incorrectly freed heap memory

Pointer overlap

Memory leaks

NOTE

Memcheck can only report these errors; it cannot prevent them from occurring. If your
program accesses memory in a way that would normally cause a segmentation fault, the
segmentation fault still occurs. However, memcheck will log an error message
immediately prior to the fault.

Because memcheck uses instrumentation, applications executed with memcheck run ten to thirty times
slower than usual.

CHAPTER 7. MEMORY

53

To run memcheck on an application, execute the following command:

valgrind --tool=memcheck application

You can also use the following options to focus memcheck output on specific types of problem.

--leak-check

After the application finishes executing, memcheck searches for memory leaks. The default value is
--leak-check=summary, which prints the number of memory leaks found. You can specify --
leak-check=yes or --leak-check=full to output details of each individual leak. To disable,
specify --leak-check=no.

--undef-value-errors

The default value is --undef-value-errors=yes, which reports errors when undefined values
are used. You can also specify --undef-value-errors=no, which will disable this report and
slightly speed up Memcheck.

--ignore-ranges

Specifies one or more ranges that memcheck should ignore when checking for memory
addressability, for example, --ignore-ranges=0xPP-0xQQ,0xRR-0xSS.

For a full list of memcheck options, see the documentation included at /usr/share/doc/valgrind-
version/valgrind_manual.pdf.

7.2.2.2. Profiling Cache Usage with Cachegrind

Cachegrind simulates application interaction with a system's cache hierarchy and branch predictor. It
tracks usage of the simulated first level instruction and data caches to detect poor code interaction with
this level of cache. It also tracks the last level of cache (second or third level) in order to track memory
access. As such, applications executed with cachegrind run twenty to one hundred times slower than
usual.

Cachegrind gathers statistics for the duration of application execution and outputs a summary to the
console. To run cachegrind on an application, execute the following command:

valgrind --tool=cachegrind application

You can also use the following options to focus cachegrind output on a specific problem.

--I1

Specifies the size, associativity, and line size of the first level instruction cache, like so: --
I1=size,associativity,line_size.

--D1

Specifies the size, associativity, and line size of the first level data cache, like so: --
D1=size,associativity,line_size.

--LL

Specifies the size, associativity, and line size of the last level cache, like so: --
LL=size,associativity,line_size.

Performance Tuning Guide

54

--cache-sim

Enables or disables the collection of cache access and miss counts. This is enabled (--cache-
sim=yes) by default. Disabling both this and --branch-sim leaves cachegrind with no information
to collect.

--branch-sim

Enables or disables the collection of branch instruction and incorrect prediction counts. This is
enabled (--branch-sim=yes) by default. Disabling both this and --cache-sim leaves
cachegrind with no information to collect.

Cachegrind writes detailed profiling information to a per-process cachegrind.out.pid file, where
pid is the process identifier. This detailed information can be further processed by the companion
cg_annotate tool, like so:

cg_annotate cachegrind.out.pid

Cachegrind also provides the cg_diff tool, which makes it easier to chart program performance before
and after a code change. To compare output files, execute the following command, replacing first with
the initial profile output file, and second with the subsequent profile output file.

cg_diff first second

The resulting output file can be viewed in greater detail with the cg_annotate tool.

For a full list of cachegrind options, see the documentation included at /usr/share/doc/valgrind-
version/valgrind_manual.pdf.

7.2.2.3. Profiling Heap and Stack Space with Massif

Massif measures the heap space used by a specified application. It measures both useful space and any
additional space allocated for bookkeeping and alignment purposes. massif helps you understand how
you can reduce your application's memory use to increase execution speed and reduce the likelihood
that your application will exhaust system swap space. Applications executed with massif run about
twenty times slower than usual.

To run massif on an application, execute the following command:

valgrind --tool=massif application

You can also use the following options to focus massif output on a specific problem.

--heap

Specifies whether massif profiles the heap. The default value is --heap=yes. Heap profiling can be
disabled by setting this to --heap=no.

--heap-admin

Specifies the number of bytes per block to use for administration when heap profiling is enabled. The
default value is 8 bytes.

--stacks

Specifies whether massif profiles the stack. The default value is --stack=no, as stack profiling can

CHAPTER 7. MEMORY

55

greatly slow massif. Set this option to --stack=yes to enable stack profiling. Note that massif
assumes that the main stack starts with a size of zero in order to better indicate the changes in stack
size that relate to the application being profiled.

--time-unit

Specifies the interval at which massif gathers profiling data. The default value is i (instructions
executed). You can also specify ms (milliseconds, or realtime) and B (bytes allocated or deallocated
on the heap and stack). Examining bytes allocated is useful for short run applications and for testing
purposes, as it is most reproducible across different hardware.

Massif outputs profiling data to a massif.out.pid file, where pid is the process identifier of the
specified application. The ms_print tool graphs this profiling data to show memory consumption over the
execution of the application, as well as detailed information about the sites responsible for allocation at
points of peak memory allocation. To graph the data from the massif.out.pid file, execute the
following command:

ms_print massif.out.pid

For a full list of Massif options, see the documentation included at /usr/share/doc/valgrind-
version/valgrind_manual.pdf.

7.3. CONFIGURING HUGETLB HUGE PAGES

Starting with Red Hat Enterprise Linux 7.1, there are two ways of reserving huge pages: at boot time
and at run time. Reserving at boot time increases the possibility of success because the memory has
not yet been significantly fragmented. However, on NUMA machines, the number of pages is
automatically split among NUMA nodes. The run-time method allows you to reserve huge pages per
NUMA node. If the run-time reservation is done as early as possible in the boot process, the probability
of memory fragmentation is lower.

7.3.1. Configuring Huge Pages at Boot Time

To configure huge pages at boot time, add the following parameters to the kernel boot command line:

hugepages

Defines the number of persistent huge pages configured in the kernel at boot time. The default value
is 0. It is only possible to allocate huge pages if there are sufficient physically contiguous free pages
in the system. Pages reserved by this parameter cannot be used for other purposes.

This value can be adjusted after boot by changing the value of the /proc/sys/vm/nr_hugepages
file.

In a NUMA system, huge pages assigned with this parameter are divided equally between nodes.
You can assign huge pages to specific nodes at runtime by changing the value of the node's
/sys/devices/system/node/node_id/hugepages/hugepages-
1048576kB/nr_hugepages file.

For more information, read the relevant kernel documentation, which is installed in
/usr/share/doc/kernel-doc-kernel_version/Documentation/vm/hugetlbpage.txt
by default.

hugepagesz

Performance Tuning Guide

56

Defines the size of persistent huge pages configured in the kernel at boot time. Valid values are 2 MB
and 1 GB. The default value is 2 MB.

default_hugepagesz

Defines the default size of persistent huge pages configured in the kernel at boot time. Valid values
are 2 MB and 1 GB. The default value is 2 MB.

Procedure 7.1. Reserving 1 GB Pages During Early Boot

The page size the HugeTLB subsystem supports depends on the architecture. On the AMD64 and Intel
64 architecture, 2 MB huge pages and 1 GB gigantic pages are supported.

1. Create a HugeTLB pool for 1 GB pages by appending the following line to the kernel command-
line options:

default_hugepagesz=1G hugepagesz=1G

2. Create a file named /usr/lib/systemd/system/hugetlb-gigantic-pages.service
with the following content:

[Unit]
Description=HugeTLB Gigantic Pages Reservation
DefaultDependencies=no
Before=dev-hugepages.mount
ConditionPathExists=/sys/devices/system/node
ConditionKernelCommandLine=hugepagesz=1G

[Service]
Type=oneshot
RemainAfterExit=yes
ExecStart=/usr/lib/systemd/hugetlb-reserve-pages.sh

[Install]
WantedBy=sysinit.target

3. Create a file named /usr/lib/systemd/hugetlb-reserve-pages.sh with the following
content:

#!/bin/sh

nodes_path=/sys/devices/system/node/
if [! -d $nodes_path]; then
 echo "ERROR: $nodes_path does not exist"
 exit 1
fi

reserve_pages()
{
 echo $1 > $nodes_path/$2/hugepages/hugepages-1048576kB/nr_hugepages
}

reserve_pages number_of_pages node

CHAPTER 7. MEMORY

57

On the last line, replace number_of_pages with the number of 1GB pages to reserve and node
with the name of the node on which to reserve these pages.

Example 7.1. Reserving Pages on node0 and node1

For example, to reserve two 1GB pages on node0 and one 1GB page on node1, replace the
last line with the following code:

reserve_pages 2 node0
reserve_pages 1 node1

You can modify it to your needs or add more lines to reserve memory in other nodes.

4. Make the script executable:

chmod +x /usr/lib/systemd/hugetlb-reserve-pages.sh

5. Enable early boot reservation:

systemctl enable hugetlb-gigantic-pages

NOTE

You can try reserving more 1GB pages at runtime by writing to nr_hugepages at any
time. However, such reservations can fail due to memory fragmentation. The most reliable
way to reserve 1GB pages is by using this script, which runs at early boot.

7.3.2. Configuring Huge Pages at Run Time

Use the following parameters to influence huge page behavior at run time:

/sys/devices/system/node/node_id/hugepages/hugepages-size/nr_hugepages

Defines the number of huge pages of the specified size assigned to the specified NUMA node. This is
supported as of Red Hat Enterprise Linux 7.1. The following example moves adds twenty 2048 kB
huge pages to node2.

numastat -cm | egrep 'Node|Huge'
 Node 0 Node 1 Node 2 Node 3 Total add
AnonHugePages 0 2 0 8 10
HugePages_Total 0 0 0 0 0
HugePages_Free 0 0 0 0 0
HugePages_Surp 0 0 0 0 0
echo 20 > /sys/devices/system/node/node2/hugepages/hugepages-
2048kB/nr_hugepages
numastat -cm | egrep 'Node|Huge'
 Node 0 Node 1 Node 2 Node 3 Total
AnonHugePages 0 2 0 8 10
HugePages_Total 0 0 40 0 40
HugePages_Free 0 0 40 0 40
HugePages_Surp 0 0 0 0 0

Performance Tuning Guide

58

/proc/sys/vm/nr_overcommit_hugepages

Defines the maximum number of additional huge pages that can be created and used by the system
through overcommitting memory. Writing any non-zero value into this file indicates that the system
obtains that number of huge pages from the kernel's normal page pool if the persistent huge page
pool is exhausted. As these surplus huge pages become unused, they are then freed and returned to
the kernel's normal page pool.

7.4. CONFIGURING TRANSPARENT HUGE PAGES

Transparent Huge Pages (THP) is an alternative solution to HugeTLB. With THP, the kernel
automatically assigns huge pages to processes, so huge pages do not need to be reserved manually.

The THP feature has two modes of operation: system-wide and per-process. When THP is enabled
system-wide, the kernel tries to assign huge pages to any process when it is possible to allocate huge
pages and the process is using a large contiguous virtual memory area. If THP is enabled per-process,
the kernel only assigns huge pages to individual processes' memory areas specified with the
madvise() system call.

Note that the THP feature only supports 2-MB pages. Transparent huge pages are enabled by default.
To check the current status, run:

cat /sys/kernel/mm/transparent_hugepage/enabled

To enable transparent huge pages, run:

echo always > /sys/kernel/mm/transparent_hugepage/enabled

To prevent applications from allocating more memory resources than necessary, you can disable huge
pages system-wide and only enable them inside MADV_HUGEPAGE madvise regions by running:

echo madvise > /sys/kernel/mm/transparent_hugepage/enabled

To disable transparent huge pages, run:

echo never > /sys/kernel/mm/transparent_hugepage/enabled

Sometimes, providing low latency to short-lived allocations has higher priority than immediately
achieving the best performance with long-lived allocations. In such cases, direct compaction can be
disabled while leaving THP enabled.

Direct compaction is a synchronous memory compaction during the huge page allocation. Disabling
direct compaction provides no guarantee of saving memory, but can decrease the risk of higher latencies
during frequent page faults. Note that if the workload benefits significantly from THP, the performance
decreases. To disable direct compaction, run:

echo madvise > /sys/kernel/mm/transparent_hugepage/defrag

For comprehensive information on transparent huge pages, see the /usr/share/doc/kernel-
doc-kernel_version/Documentation/vm/transhuge.txt file, which is available after installing
the kernel-doc package.

CHAPTER 7. MEMORY

59

7.5. CONFIGURING SYSTEM MEMORY CAPACITY

This section discusses memory-related kernel parameters that may be useful in improving memory
utilization on your system. These parameters can be temporarily set for testing purposes by altering the
value of the corresponding file in the /proc file system. Once you have determined the values that
produce optimal performance for your use case, you can set them permanently by using the sysctl
command.

Memory usage is typically configured by setting the value of one or more kernel parameters. These
parameters can be set temporarily by altering the contents of files in the /proc file system, or they can be
set persistently with the sysctl tool, which is provided by the procps-ng package.

For example, to set the overcommit_memory parameter to 1 temporarily, run the following command:

echo 1 > /proc/sys/vm/overcommit_memory

To set this value persistently, add sysctl vm.overcommit_memory=1 in /etc/sysctl.conf then
run the following command:

sysctl -p

Setting a parameter temporarily is useful for determining the effect the parameter has on your system.
You can then set the parameter persistently when you are sure that the parameter's value has the
desired effect.

NOTE

To expand your expertise, you might also be interested in the Red Hat Enterprise Linux
Performance Tuning (RH442) training course.

7.5.1. Virtual Memory Parameters

The parameters listed in this section are located in /proc/sys/vm unless otherwise indicated.

dirty_ratio

A percentage value. When this percentage of total system memory is modified, the system begins
writing the modifications to disk with the pdflush operation. The default value is 20 percent.

dirty_background_ratio

A percentage value. When this percentage of total system memory is modified, the system begins
writing the modifications to disk in the background. The default value is 10 percent.

overcommit_memory

Defines the conditions that determine whether a large memory request is accepted or denied.

The default value is 0. By default, the kernel performs heuristic memory overcommit handling by
estimating the amount of memory available and failing requests that are too large. However, since
memory is allocated using a heuristic rather than a precise algorithm, overloading memory is possible
with this setting.

When this parameter is set to 1, the kernel performs no memory overcommit handling. This increases
the possibility of memory overload, but improves performance for memory-intensive tasks.

Performance Tuning Guide

60

http://www.redhat.com/en/services/training/rh442-red-hat-enterprise-performance-tuning?cr=cp|tr|pdtxt|00004

When this parameter is set to 2, the kernel denies requests for memory equal to or larger than the
sum of total available swap space and the percentage of physical RAM specified in
overcommit_ratio. This reduces the risk of overcommitting memory, but is recommended only for
systems with swap areas larger than their physical memory.

overcommit_ratio

Specifies the percentage of physical RAM considered when overcommit_memory is set to 2. The
default value is 50.

max_map_count

Defines the maximum number of memory map areas that a process can use. The default value
(65530) is appropriate for most cases. Increase this value if your application needs to map more than
this number of files.

min_free_kbytes

Specifies the minimum number of kilobytes to keep free across the system. This is used to determine
an appropriate value for each low memory zone, each of which is assigned a number of reserved free
pages in proportion to their size.

WARNING

Extreme values can damage your system. Setting min_free_kbytes to an
extremely low value prevents the system from reclaiming memory, which can
result in system hangs and OOM-killing processes. However, setting
min_free_kbytes too high (for example, to 5–10% of total system memory)
causes the system to enter an out-of-memory state immediately, resulting in the
system spending too much time reclaiming memory.

oom_adj

In the event that the system runs out of memory and the panic_on_oom parameter is set to 0, the
oom_killer function kills processes until the system can recover, starting from the process with the
highest oom_score.

The oom_adj parameter helps determine the oom_score of a process. This parameter is set per
process identifier. A value of -17 disables the oom_killer for that process. Other valid values are
from -16 to 15.

NOTE

Processes spawned by an adjusted process inherit the oom_score of the process.

swappiness

The swappiness value, ranging from 0 to 100, controls the degree to which the system favors
anonymous memory or the page cache. A high value improves file-system performance while
aggressively swapping less active processes out of RAM. A low value avoids swapping processes out

CHAPTER 7. MEMORY

61

of memory, which usually decreases latency at the cost of I/O performance. The default value is 60.

WARNING

Setting swappiness==0 will very aggressively avoids swapping out, which
increase the risk of OOM killing under strong memory and I/O pressure.

7.5.2. File System Parameters

Parameters listed in this section are located in /proc/sys/fs unless otherwise indicated.

aio-max-nr

Defines the maximum allowed number of events in all active asynchronous input/output contexts. The
default value is 65536. Modifying this value does not pre-allocate or resize any kernel data
structures.

file-max

Determines the maximum number of file handles for the entire system. The default value on Red Hat
Enterprise Linux 7 is the maximum of either 8192, or one tenth of the free memory pages available at
the time the kernel starts.

Raising this value can resolve errors caused by a lack of available file handles.

7.5.3. Kernel Parameters

Default values for the following parameters, located in the /proc/sys/kernel/ directory, can be
calculated by the kernel at boot time depending on available system resources.

msgmax

Defines the maximum allowable size in bytes of any single message in a message queue. This value
must not exceed the size of the queue (msgmnb). To determine the current msgmax value on your
system, use:

sysctl kernel.msgmax

msgmnb

Defines the maximum size in bytes of a single message queue. To determine the current msgmnb
value on your system, use:

sysctl kernel.msgmnb

msgmni

Defines the maximum number of message queue identifiers, and therefore the maximum number of
queues. To determine the current msgmni value on your system, use:

Performance Tuning Guide

62

sysctl kernel.msgmni

shmall

Defines the total amount of shared memory pages that can be used on the system at one time. A
page is 4096 bytes on the AMD64 and Intel 64 architecture, for example.

To determine the current shmall value on your system, use:

sysctl kernel.shmall

shmmax

Defines the maximum size (in bytes) of a single shared memory segment allowed by the kernel. To
determine the current shmmax value on your system, use:

sysctl kernel.shmmax

shmmni

Defines the system-wide maximum number of shared memory segments. The default value is 4096
on all systems.

threads-max

Defines the system-wide maximum number of threads available to the kernel at one time. To
determine the current threads-max value on your system, use:

sysctl kernel.threads-max

The default value is the result of:

mempages / (8 * THREAD_SIZE / PAGE SIZE)

The minimum value is 20.

CHAPTER 7. MEMORY

63

CHAPTER 8. STORAGE AND FILE SYSTEMS
This chapter outlines supported file systems and configuration options that affect application
performance for both I/O and file systems in Red Hat Enterprise Linux 7. Section 8.1, “Considerations”
discusses the I/O and file system related factors that affect performance. Section 8.2, “Monitoring and
Diagnosing Performance Problems” teaches you how to use Red Hat Enterprise Linux 7 tools to
diagnose performance problems related to I/O or file system configuration details. Section 8.4,
“Configuration Tools” discusses the tools and strategies you can use to solve I/O and file system related
performance problems in Red Hat Enterprise Linux 7.

8.1. CONSIDERATIONS

The appropriate settings for storage and file system performance are highly dependent on the purpose
of the storage. I/O and file system performance can be affected by any of the following factors:

Data write or read patterns

Data alignment with underlying geometry

Block size

File system size

Journal size and location

Recording access times

Ensuring data reliability

Pre-fetching data

Pre-allocating disk space

File fragmentation

Resource contention

Read this chapter to gain an understanding of the formatting and mount options that affect file system
throughput, scalability, responsiveness, resource usage, and availability.

8.1.1. I/O Schedulers

The I/O scheduler determines when and for how long I/O operations run on a storage device. It is also
known as the I/O elevator.

Red Hat Enterprise Linux 7 provides three I/O schedulers.

deadline

The default I/O scheduler for all block devices, except for SATA disks. Deadline attempts to provide
a guaranteed latency for requests from the point at which requests reach the I/O scheduler. This
scheduler is suitable for most use cases, but particularly those in which read operations occur more
often than write operations.

Queued I/O requests are sorted into a read or write batch and then scheduled for execution in
increasing LBA order. Read batches take precedence over write batches by default, as applications
are more likely to block on read I/O. After a batch is processed, deadline checks how long write

Performance Tuning Guide

64

operations have been starved of processor time and schedules the next read or write batch as
appropriate. The number of requests to handle per batch, the number of read batches to issue per
write batch, and the amount of time before requests expire are all configurable; see Section 8.4.4,
“Tuning the Deadline Scheduler” for details.

cfq

The default scheduler only for devices identified as SATA disks. The Completely Fair Queueing
scheduler, cfq, divides processes into three separate classes: real time, best effort, and idle.
Processes in the real time class are always performed before processes in the best effort class,
which are always performed before processes in the idle class. This means that processes in the real
time class can starve both best effort and idle processes of processor time. Processes are assigned
to the best effort class by default.

cfq uses historical data to anticipate whether an application will issue more I/O requests in the near
future. If more I/O is expected, cfq idles to wait for the new I/O, even if I/O from other processes is
waiting to be processed.

Because of this tendency to idle, the cfq scheduler should not be used in conjunction with hardware
that does not incur a large seek penalty unless it is tuned for this purpose. It should also not be used
in conjunction with other non-work-conserving schedulers, such as a host-based hardware RAID
controller, as stacking these schedulers tends to cause a large amount of latency.

cfq behavior is highly configurable; see Section 8.4.5, “Tuning the CFQ Scheduler” for details.

noop

The noop I/O scheduler implements a simple FIFO (first-in first-out) scheduling algorithm. Requests
are merged at the generic block layer through a simple last-hit cache. This can be the best scheduler
for CPU-bound systems using fast storage.

For details on setting a different default I/O scheduler, or specifying a different scheduler for a particular
device, see Section 8.4, “Configuration Tools”.

8.1.2. File Systems

Read this section for details about supported file systems in Red Hat Enterprise Linux 7, their
recommended use cases, and the format and mount options available to file systems in general. Detailed
tuning recommendations for these file systems are available in Section 8.4.7, “Configuring File Systems
for Performance”.

8.1.2.1. XFS

XFS is a robust and highly scalable 64-bit file system. It is the default file system in Red Hat
Enterprise Linux 7. XFS uses extent-based allocation, and features a number of allocation schemes,
including pre-allocation and delayed allocation, both of which reduce fragmentation and aid performance.
It also supports metadata journaling, which can facilitate crash recovery. XFS can be defragmented and
enlarged while mounted and active, and Red Hat Enterprise Linux 7 supports several XFS-specific
backup and restore utilities.

As of Red Hat Enterprise Linux 7.0 GA, XFS is supported to a maximum file system size of 500 TB, and
a maximum file offset of 8 EB (sparse files). For details about administering XFS, see the Red Hat
Enterprise Linux 7 Storage Administration Guide. For assistance tuning XFS for a specific purpose, see
Section 8.4.7.1, “Tuning XFS”.

CHAPTER 8. STORAGE AND FILE SYSTEMS

65

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/index

8.1.2.2. Ext4

Ext4 is a scalable extension of the ext3 file system. Its default behavior is optimal for most work loads.
However, it is supported only to a maximum file system size of 50 TB, and a maximum file size of 16 TB.
For details about administering ext4, see the Red Hat Enterprise Linux 7 Storage Administration Guide.
For assistance tuning ext4 for a specific purpose, see Section 8.4.7.2, “Tuning ext4”.

8.1.2.3. Btrfs (Technology Preview)

The default file system for Red Hat Enterprise Linux 7 is XFS. Btrfs (B-tree file system), a relatively new
copy-on-write (COW) file system, is shipped as a Technology Preview. Some of the unique Btrfs
features include:

The ability to take snapshots of specific files, volumes or sub-volumes rather than the whole file
system;

supporting several versions of redundant array of inexpensive disks (RAID);

back referencing map I/O errors to file system objects;

transparent compression (all files on the partition are automatically compressed);

checksums on data and meta-data.

Although Btrfs is considered a stable file system, it is under constant development, so some
functionality, such as the repair tools, are basic compared to more mature file systems.

Currently, selecting Btrfs is suitable when advanced features (such as snapshots, compression, and file
data checksums) are required, but performance is relatively unimportant. If advanced features are not
required, the risk of failure and comparably weak performance over time make other file systems
preferable. Another drawback, compared to other file systems, is the maximum supported file system
size of 50 TB.

For more information, see Section 8.4.7.3, “Tuning Btrfs”, and the chapter on Btrfs in the Red Hat
Enterprise Linux 7 Storage Administration Guide.

8.1.2.4. GFS2

Global File System 2 (GFS2) is part of the High Availability Add-On that provides clustered file system
support to Red Hat Enterprise Linux 7. GFS2 provides a consistent file system image across all servers
in a cluster, which allows servers to read from and write to a single shared file system.

GFS2 is supported to a maximum file system size of 100 TB.

For details on administering GFS2, see the Global File System 2 guide or the Red Hat Enterprise Linux 7
Storage Administration Guide. For information on tuning GFS2 for a specific purpose, see
Section 8.4.7.4, “Tuning GFS2”.

8.1.3. Generic Tuning Considerations for File Systems

This section covers tuning considerations common to all file systems. For tuning recommendations
specific to your file system, see Section 8.4.7, “Configuring File Systems for Performance”.

8.1.3.1. Considerations at Format Time

Performance Tuning Guide

66

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/index
https://access.redhat.com/site/support/offerings/techpreview/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-btrfs.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/global_file_system_2/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/index

Some file system configuration decisions cannot be changed after the device is formatted. This section
covers the options available to you for decisions that must be made before you format your storage
device.

Size

Create an appropriately-sized file system for your workload. Smaller file systems have proportionally
shorter backup times and require less time and memory for file system checks. However, if your file
system is too small, its performance will suffer from high fragmentation.

Block size

The block is the unit of work for the file system. The block size determines how much data can be
stored in a single block, and therefore the smallest amount of data that is written or read at one time.

The default block size is appropriate for most use cases. However, your file system will perform
better and store data more efficiently if the block size (or the size of multiple blocks) is the same as or
slightly larger than amount of data that is typically read or written at one time. A small file will still use
an entire block. Files can be spread across multiple blocks, but this can create additional runtime
overhead. Additionally, some file systems are limited to a certain number of blocks, which in turn
limits the maximum size of the file system.

Block size is specified as part of the file system options when formatting a device with the mkfs
command. The parameter that specifies the block size varies with the file system; see the mkfs man
page for your file system for details. For example, to see the options available when formatting an
XFS file system, execute the following command.

$ man mkfs.xfs

Geometry

File system geometry is concerned with the distribution of data across a file system. If your system
uses striped storage, like RAID, you can improve performance by aligning data and metadata with
the underlying storage geometry when you format the device.

Many devices export recommended geometry, which is then set automatically when the devices are
formatted with a particular file system. If your device does not export these recommendations, or you
want to change the recommended settings, you must specify geometry manually when you format the
device with mkfs.

The parameters that specify file system geometry vary with the file system; see the mkfs man page
for your file system for details. For example, to see the options available when formatting an ext4 file
system, execute the following command.

$ man mkfs.ext4

External journals

Journaling file systems document the changes that will be made during a write operation in a journal
file prior to the operation being executed. This reduces the likelihood that a storage device will
become corrupted in the event of a system crash or power failure, and speeds up the recovery
process.

Metadata-intensive workloads involve very frequent updates to the journal. A larger journal uses more
memory, but reduces the frequency of write operations. Additionally, you can improve the seek time of
a device with a metadata-intensive workload by placing its journal on dedicated storage that is as fast
as, or faster than, the primary storage.

CHAPTER 8. STORAGE AND FILE SYSTEMS

67

WARNING

Ensure that external journals are reliable. Losing an external journal device will
cause file system corruption.

External journals must be created at format time, with journal devices being specified at mount time.
For details, see the mkfs and mount man pages.

$ man mkfs

$ man mount

8.1.3.2. Considerations at Mount Time

This section covers tuning decisions that apply to most file systems and can be specified as the device is
mounted.

Barriers

File system barriers ensure that file system metadata is correctly written and ordered on persistent
storage, and that data transmitted with fsync persists across a power outage. On previous versions
of Red Hat Enterprise Linux, enabling file system barriers could significantly slow applications that
relied heavily on fsync, or created and deleted many small files.

In Red Hat Enterprise Linux 7, file system barrier performance has been improved such that the
performance effects of disabling file system barriers are negligible (less than 3%).

For further information, see the Red Hat Enterprise Linux 7 Storage Administration Guide.

Access Time

Every time a file is read, its metadata is updated with the time at which access occurred (atime).
This involves additional write I/O. In most cases, this overhead is minimal, as by default Red Hat
Enterprise Linux 7 updates the atime field only when the previous access time was older than the
times of last modification (mtime) or status change (ctime).

However, if updating this metadata is time consuming, and if accurate access time data is not
required, you can mount the file system with the noatime mount option. This disables updates to
metadata when a file is read. It also enables nodiratime behavior, which disables updates to
metadata when a directory is read.

Read-ahead

Read-ahead behavior speeds up file access by pre-fetching data that is likely to be needed soon and
loading it into the page cache, where it can be retrieved more quickly than if it were on disk. The
higher the read-ahead value, the further ahead the system pre-fetches data.

Red Hat Enterprise Linux attempts to set an appropriate read-ahead value based on what it detects
about your file system. However, accurate detection is not always possible. For example, if a storage
array presents itself to the system as a single LUN, the system detects the single LUN, and does not

Performance Tuning Guide

68

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/index

set the appropriate read-ahead value for an array.

Workloads that involve heavy streaming of sequential I/O often benefit from high read-ahead values.
The storage-related tuned profiles provided with Red Hat Enterprise Linux 7 raise the read-ahead
value, as does using LVM striping, but these adjustments are not always sufficient for all workloads.

The parameters that define read-ahead behavior vary with the file system; see the mount man page
for details.

$ man mount

8.1.3.3. Maintenance

Regularly discarding blocks that are not in use by the file system is a recommended practice for both
solid-state disks and thinly-provisioned storage. There are two methods of discarding unused blocks:
batch discard and online discard.

Batch discard

This type of discard is part of the fstrim command. It discards all unused blocks in a file system that
match criteria specified by the administrator.

Red Hat Enterprise Linux 7 supports batch discard on XFS and ext4 formatted devices that support
physical discard operations (that is, on HDD devices where the value of
/sys/block/devname/queue/discard_max_bytes is not zero, and SSD devices where the
value of /sys/block/devname/queue/discard_granularity is not 0).

Online discard

This type of discard operation is configured at mount time with the discard option, and runs in real
time without user intervention. However, online discard only discards blocks that are transitioning from
used to free. Red Hat Enterprise Linux 7 supports online discard on XFS and ext4 formatted devices.

Red Hat recommends batch discard except where online discard is required to maintain performance,
or where batch discard is not feasible for the system's workload.

Pre-allocation

Pre-allocation marks disk space as being allocated to a file without writing any data into that space.
This can be useful in limiting data fragmentation and poor read performance. Red Hat
Enterprise Linux 7 supports pre-allocating space on XFS, ext4, and GFS2 devices at mount time; see
the mount man page for the appropriate parameter for your file system. Applications can also benefit
from pre-allocating space by using the fallocate(2) glibc call.

8.2. MONITORING AND DIAGNOSING PERFORMANCE PROBLEMS

Red Hat Enterprise Linux 7 provides a number of tools that are useful for monitoring system performance
and diagnosing performance problems related to I/O and file systems and their configuration. This
section outlines the available tools and gives examples of how to use them to monitor and diagnose I/O
and file system related performance issues.

8.2.1. Monitoring System Performance with vmstat

CHAPTER 8. STORAGE AND FILE SYSTEMS

69

Vmstat reports on processes, memory, paging, block I/O, interrupts, and CPU activity across the entire
system. It can help administrators determine whether the I/O subsystem is responsible for any
performance issues.

The information most relevant to I/O performance is in the following columns:

si

Swap in, or reads from swap space, in KB.

so

Swap out, or writes to swap space, in KB.

bi

Block in, or block write operations, in KB.

bo

Block out, or block read operations, in KB.

wa

The portion of the queue that is waiting for I/O operations to complete.

Swap in and swap out are particularly useful when your swap space and your data are on the same
device, and as indicators of memory usage.

Additionally, the free, buff, and cache columns can help identify write-back frequency. A sudden drop in
cache values and an increase in free values indicates that write-back and page cache invalidation has
begun.

If analysis with vmstat shows that the I/O subsystem is responsible for reduced performance,
administrators can use iostat to determine the responsible I/O device.

vmstat is provided by the procps-ng package. For detailed information about using vmstat, see the man
page:

$ man vmstat

8.2.2. Monitoring I/O Performance with iostat

Iostat is provided by the sysstat package. It reports on I/O device load in your system. If analysis with
vmstat shows that the I/O subsystem is responsible for reduced performance, you can use iostat to
determine the I/O device responsible.

You can focus the output of iostat reports on a specific device by using the parameters defined in the
iostat man page:

$ man iostat

8.2.2.1. Detailed I/O Analysis with blktrace

Performance Tuning Guide

70

Blktrace provides detailed information about how time is spent in the I/O subsystem. The companion
utility blkparse reads the raw output from blktrace and produces a human readable summary of input
and output operations recorded by blktrace.

For more detailed information about this tool, see the blktrace(8) and blkparse(1) man pages:

$ man blktrace

$ man blkparse

8.2.2.2. Analyzing blktrace Output with btt

The btt utility is provided as part of the blktrace package. It analyzes blktrace output and displays the
amount of time that data spends in each area of the I/O stack, making it easier to spot bottlenecks in the
I/O subsystem.

Some of the important events tracked by the blktrace mechanism and analyzed by btt are:

Queuing of the I/O event (Q)

Dispatch of the I/O to the driver event (D)

Completion of I/O event (C)

You can include or exclude factors involved with I/O performance issues by examining combinations of
events.

To inspect the timing of sub-portions of each I/O device, look at the timing between captured blktrace
events for the I/O device. For example, the following command reports the total amount of time spent in
the lower part of the kernel I/O stack (Q2C), which includes scheduler, driver, and hardware layers, as an
average under await time:

$ iostat -x

[...]
Device: await r_await w_await
vda 16.75 0.97 162.05
dm-0 30.18 1.13 223.45
dm-1 0.14 0.14 0.00
[...]

If the device takes a long time to service a request (D2C), the device may be overloaded, or the workload
sent to the device may be sub-optimal. If block I/O is queued for a long time before being dispatched to
the storage device (Q2G), it may indicate that the storage in use is unable to serve the I/O load. For
example, a LUN queue full condition has been reached and is preventing the I/O from being dispatched
to the storage device.

Looking at the timing across adjacent I/O provide insight can provide insight into some types of
bottleneck situations. For example, if btt shows that the time between requests being sent to the block
layer (Q2Q) is larger than the total time that requests spent in the block layer (Q2C), this indicates that
there is idle time between I/O requests and the I/O subsystem may not be responsible for performance
issues.

CHAPTER 8. STORAGE AND FILE SYSTEMS

71

Comparing Q2C values across adjacent I/O can show the amount of variability in storage service time.
The values can be either:

fairly consistent with a small range, or

highly variable in the distribution range, which indicates a possible storage device side
congestion issue.

For more detailed information about this tool, see the btt(1) man page:

$ man btt

8.2.2.3. Analyzing blktrace Output with seekwatcher

The seekwatcher tool can use blktrace output to graph I/O over time. It focuses on the Logical Block
Address (LBA) of disk I/O, throughput in megabytes per second, the number of seeks per second, and
I/O operations per second. This can help to identify when you are hitting the operations-per-second limit
of a device.

For more detailed information about this tool, see the man page:

$ man seekwatcher

8.2.3. Storage Monitoring with SystemTap

The Red Hat Enterprise Linux 7 SystemTap Beginners Guide includes several sample scripts that are
useful for profiling and monitoring storage performance.

The following SystemTap example scripts relate to storage performance and may be useful in
diagnosing storage or file system performance problems. By default they are installed to the
/usr/share/doc/systemtap-client/examples/io directory.

disktop.stp

Checks the status of reading/writing disk every 5 seconds and outputs the top ten entries during that
period.

iotime.stp

Prints the amount of time spent on read and write operations, and the number of bytes read and
written.

traceio.stp

Prints the top ten executables based on cumulative I/O traffic observed, every second.

traceio2.stp

Prints the executable name and process identifier as reads and writes to the specified device occur.

inodewatch.stp

Prints the executable name and process identifier each time a read or write occurs to the specified
inode on the specified major/minor device.

inodewatch2.stp

Performance Tuning Guide

72

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/systemtap_beginners_guide/

Prints the executable name, process identifier, and attributes each time the attributes are changed on
the specified inode on the specified major/minor device.

8.3. SOLID-STATE DISKS

Solid-state disks (SSD) use NAND flash chips rather than rotating magnetic platters to store persistent
data. They provide a constant access time for data across their full Logical Block Address range, and do
not incur measurable seek costs like their rotating counterparts. They are more expensive per gigabyte
of storage space and have a lesser storage density, but they also have lower latency and greater
throughput than HDDs.

Performance generally degrades as the used blocks on an SSD approach the capacity of the disk. The
degree of degradation varies by vendor, but all devices experience degradation in this circumstance.
Enabling discard behavior can help to alleviate this degradation. For details, see Section 8.1.3.3,
“Maintenance”.

The default I/O scheduler and virtual memory options are suitable for use with SSDs.

For more information on SSD, see the Solid-State Disk Deployment Guidelines chapter in the Red Hat
Enterprise Linux 7 Storage Administration Guide.

SSD Tuning Considerations
Consider the following factors when configuring settings that can affect SSD performance:

I/O Scheduler

Any I/O scheduler is expected to perform well with most SSDs. However, as with any other storage type,
Red Hat recommends benchmarking to determine the optimal configuration for a given workload. When
using SSDs, Red Hat advises changing the I/O scheduler only for benchmarking particular workloads.
For instructions on how to switch between I/O schedulers, see the
/usr/share/doc/kernel-version/Documentation/block/switching-sched.txt file.

As of Red Hat Enterprise Linuxnbsp 7.0, the default I/O scheduler is Deadline, except for use with SATA
drives, which use CFQ as the default I/O scheduler. For faster storage, Deadline can outperform CFQ
leading to better I/O performance without the need for specific tuning. Sometimes, the default is not
suitable for certain disks, such as SAS rotational disks. In such cases, change the I/O scheduler to CFQ.

Virtual Memory

Like the I/O scheduler, virtual memory (VM) subsystem requires no special tuning. Given the fast nature
of I/O on SSD, try turning down the vm_dirty_background_ratio and vm_dirty_ratio settings,
as increased write-out activity does not usually have a negative impact on the latency of other operations
on the disk. However, this tuning can generate more overall I/O, and is therefore not generally
recommended without workload-specific testing.

Swap

An SSD can also be used as a swap device, and is likely to produce good page-out and page-in
performance.

8.4. CONFIGURATION TOOLS

Red Hat Enterprise Linux provides a number of tools to assist administrators in configuring the storage
and file systems. This section outlines the available tools and provides examples of how they can be
used to solve I/O and file system related performance problems in Red Hat Enterprise Linux 7.

CHAPTER 8. STORAGE AND FILE SYSTEMS

73

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Storage_Administration_Guide/index.html#ch-ssd

8.4.1. Configuring Tuning Profiles for Storage Performance

The Tuned service provides a number of profiles designed to improve performance for specific use
cases. The following profiles are particularly useful for improving storage performance.

latency-performance

throughput-performance (the default)

To configure a profile on your system, run the following command, replacing name with the name of the
profile you want to use.

$ tuned-adm profile name

The tuned-adm recommend command recommends an appropriate profile for your system.

For further details about these profiles or additional configuration options, see Section A.5, “tuned-adm”.

8.4.2. Setting the Default I/O Scheduler

The default I/O scheduler is the scheduler that is used if no other scheduler is explicitly specified for the
device.

If no default scheduler is specified, the cfq scheduler is used for SATA drives, and the deadline
scheduler is used for all other drives. If you specify a default scheduler by following the instructions in
this section, that default scheduler is applied to all devices.

To set the default I/O scheduler, you can use the Tuned tool, or modify the /etc/default/grub file
manually.

Red Hat recommends using the Tuned tool to specify the default I/O scheduler on a booted system. To
set the elevator parameter, enable the disk plug-in. For information on the disk plug-in, see
Section 3.1.1, “Plug-ins” in the Tuned chapter.

To modify the default scheduler by using GRUB 2, append the elevator parameter to the kernel
command line, either at boot time, or when the system is booted. You can use the Tuned tool, or modify
the /etc/default/grub file manually, as described in Procedure 8.1, “Setting the Default I/O
Scheduler by Using GRUB 2”.

Procedure 8.1. Setting the Default I/O Scheduler by Using GRUB 2

To set the default I/O Scheduler on a booted system and make the configuration persist after reboot:

1. Add the elevator parameter to the GRUB_CMDLINE_LINUX line in the /etc/default/grub
file.

cat /etc/default/grub
...
GRUB_CMDLINE_LINUX="crashkernel=auto rd.lvm.lv=vg00/lvroot
rd.lvm.lv=vg00/lvswap elevator=noop"
...

In Red Hat Enterprise Linux 7, the available schedulers are deadline, noop, and cfq. For
more information, see the cfq-iosched.txt and deadline-iosched.txt files in the
documentation for your kernel, available after installing the kernel-doc package.

Performance Tuning Guide

74

2. Create a new configuration with the elevator parameter added.

The location of the GRUB 2 configuration file is different on systems with the BIOS firmware and
on systems with UEFI. Use one of the following commands to recreate the GRUB 2 configuration
file.

On a system with the BIOS firmware, use:

grub2-mkconfig -o /etc/grub2.cfg

On a system with the UEFI firmware, use:

grub2-mkconfig -o /etc/grub2-efi.cfg

3. Reboot the system for the change to take effect.

For more information on version 2 of the GNU GRand Unified Bootloader (GRUB 2), see the
Working with the GRUB 2 Boot Loader chapter of the Red Hat Enterprise Linux 7 System
Administrator's Guide.

8.4.3. Generic Block Device Tuning Parameters

The generic tuning parameters listed in this section are available within the /sys/block/sdX/queue/
directory. The listed tuning parameters are separate from I/O scheduler tuning, and are applicable to all
I/O schedulers.

add_random

Some I/O events contribute to the entropy pool for /dev/random. This parameter can be set to 0 if
the overhead of these contributions becomes measurable.

iostats

The default value is 1 (enabled). Setting iostats to 0 disables the gathering of I/O statistics for the
device, which removes a small amount of overhead with the I/O path. Setting iostats to 0 might
slightly improve performance for very high performance devices, such as certain NVMe solid-state
storage devices. It is recommended to leave iostats enabled unless otherwise specified for the
given storage model by the vendor.

If you disable iostats, the I/O statistics for the device are no longer present within the
/proc/diskstats file. The content of /sys/diskstats is the source of I/O information for
monitoring I/O tools, such as sar or iostats. Therefore, if you disable the iostats parameter for
a device, the device is no longer present in the output of I/O monitoring tools.

max_sectors_kb

Specifies the maximum size of an I/O request in kilobytes. The default value is 512 KB. The
minimum value for this parameter is determined by the logical block size of the storage device. The
maximum value for this parameter is determined by the value of max_hw_sectors_kb.

Certain solid-state disks perform poorly when the I/O requests are larger than the internal erase block
size. To determine if this is the case of the solid-state disk model attached to the system, check with
the hardware vendor, and follow their recommendations. Red Hat recommends max_sectors_kb to
always be a multiple of the optimal I/O size and the internal erase block size. Use a value of
logical_block_size for either parameter if they are zero or not specified by the storage device.

CHAPTER 8. STORAGE AND FILE SYSTEMS

75

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-Working_with_the_GRUB_2_Boot_Loader.html#sec-Introduction_to_GRUB_2

nomerges

Most workloads benefit from request merging. However, disabling merges can be useful for
debugging purposes. By default, the nomerges parameter is set to 0, which enables merging. To
disable simple one-hit merging, set nomerges to 1. To disable all types of merging, set nomerges to
2.

nr_requests

Specifies the maximum number of read and write requests that can be queued at one time. The
default value is 128, which means that 128 read requests and 128 write requests can be queued
before the next process to request a read or write is put to sleep.

For latency-sensitive applications, lower the value of this parameter and limit the command queue
depth on the storage so that write-back I/O cannot fill the device queue with write requests. When the
device queue fills, other processes attempting to perform I/O operations are put to sleep until queue
space becomes available. Requests are then allocated in a round-robin manner, which prevents one
process from continuously consuming all spots in the queue.

The maximum number of I/O operations within the I/O scheduler is nr_requests*2. As stated,
nr_requests is applied separately for reads and writes. Note that nr_requests only applies to the
I/O operations within the I/O scheduler and not to I/O operations already dispatched to the underlying
device. Therefore, the maximum outstanding limit of I/O operations against a device is
(nr_requests*2)+(queue_depth) where queue_depth is
/sys/block/sdN/device/queue_depth, sometimes also referred to as the LUN queue depth.
You can see this total outstanding number of I/O operations in, for example, the output of iostat in
the avgqu-sz column.

optimal_io_size

Some storage devices report an optimal I/O size through this parameter. If this value is reported,
Red Hat recommends that applications issue I/O aligned to and in multiples of the optimal I/O size
wherever possible.

read_ahead_kb

Defines the maximum number of kilobytes that the operating system may read ahead during a
sequential read operation. As a result, the likely-needed information is already present within the
kernel page cache for the next sequential read, which improves read I/O performance.

Device mappers often benefit from a high read_ahead_kb value. 128 KB for each device to be
mapped is a good starting point, but increasing the read_ahead_kb value up to 4–8 MB might
improve performance in application environments where sequential reading of large files takes place.

rotational

Some solid-state disks do not correctly advertise their solid-state status, and are mounted as
traditional rotational disks. If your solid-state device does does not set this to 0 automatically, set it
manually to disable unnecessary seek-reducing logic in the scheduler.

rq_affinity

By default, I/O completions can be processed on a different processor than the processor that issued
the I/O request. Set rq_affinity to 1 to disable this ability and perform completions only on the
processor that issued the I/O request. This can improve the effectiveness of processor data caching.

scheduler

Performance Tuning Guide

76

To set the scheduler or scheduler preference order for a particular storage device, edit the
/sys/block/devname/queue/scheduler file, where devname is the name of the device you
want to configure.

echo cfq > /sys/block/hda/queue/scheduler

8.4.4. Tuning the Deadline Scheduler

When deadline is in use, queued I/O requests are sorted into a read or write batch and then
scheduled for execution in increasing LBA order. Read batches take precedence over write batches by
default, as applications are more likely to block on read I/O. After a batch is processed, deadline
checks how long write operations have been starved of processor time and schedules the next read or
write batch as appropriate.

The following parameters affect the behavior of the deadline scheduler.

fifo_batch

The number of read or write operations to issue in a single batch. The default value is 16. A higher
value can increase throughput, but will also increase latency.

front_merges

If your workload will never generate front merges, this tunable can be set to 0. However, unless you
have measured the overhead of this check, Red Hat recommends the default value of 1.

read_expire

The number of milliseconds in which a read request should be scheduled for service. The default
value is 500 (0.5 seconds).

write_expire

The number of milliseconds in which a write request should be scheduled for service. The default
value is 5000 (5 seconds).

writes_starved

The number of read batches that can be processed before processing a write batch. The higher this
value is set, the greater the preference given to read batches.

8.4.5. Tuning the CFQ Scheduler

When CFQ is in use, processes are placed into three classes: real time, best effort, and idle. All real time
processes are scheduled before any best effort processes, which are scheduled before any idle
processes. By default, processes are classed as best effort. You can manually adjust the class of a
process with the ionice command.

You can further adjust the behavior of the CFQ scheduler with the following parameters. These
parameters are set on a per-device basis by altering the specified files under the
/sys/block/devname/queue/iosched directory.

back_seek_max

CHAPTER 8. STORAGE AND FILE SYSTEMS

77

The maximum distance in kilobytes that CFQ will perform a backward seek. The default value is
16 KB. Backward seeks typically damage performance, so large values are not recommended.

back_seek_penalty

The multiplier applied to backward seeks when the disk head is deciding whether to move forward or
backward. The default value is 2. If the disk head position is at 1024 KB, and there are equidistant
requests in the system (1008 KB and 1040 KB, for example), the back_seek_penalty is applied to
backward seek distances and the disk moves forward.

fifo_expire_async

The length of time in milliseconds that an asynchronous (buffered write) request can remain
unserviced. After this amount of time expires, a single starved asynchronous request is moved to the
dispatch list. The default value is 250 milliseconds.

fifo_expire_sync

The length of time in milliseconds that a synchronous (read or O_DIRECT write) request can remain
unserviced. After this amount of time expires, a single starved synchronous request is moved to the
dispatch list. The default value is 125 milliseconds.

group_idle

This parameter is set to 0 (disabled) by default. When set to 1 (enabled), the cfq scheduler idles on
the last process that is issuing I/O in a control group. This is useful when using proportional weight I/O
control groups and when slice_idle is set to 0 (on fast storage).

group_isolation

This parameter is set to 0 (disabled) by default. When set to 1 (enabled), it provides stronger
isolation between groups, but reduces throughput, as fairness is applied to both random and
sequential workloads. When group_isolation is disabled (set to 0), fairness is provided to
sequential workloads only. For more information, see the installed documentation in
/usr/share/doc/kernel-doc-version/Documentation/cgroups/blkio-
controller.txt.

low_latency

This parameter is set to 1 (enabled) by default. When enabled, cfq favors fairness over throughput
by providing a maximum wait time of 300 ms for each process issuing I/O on a device. When this
parameter is set to 0 (disabled), target latency is ignored and each process receives a full time slice.

quantum

This parameter defines the number of I/O requests that cfq sends to one device at one time,
essentially limiting queue depth. The default value is 8 requests. The device being used may support
greater queue depth, but increasing the value of quantum will also increase latency, especially for
large sequential write work loads.

slice_async

This parameter defines the length of the time slice (in milliseconds) allotted to each process issuing
asynchronous I/O requests. The default value is 40 milliseconds.

slice_idle

This parameter specifies the length of time in milliseconds that cfq idles while waiting for further

Performance Tuning Guide

78

requests. The default value is 0 (no idling at the queue or service tree level). The default value is
ideal for throughput on external RAID storage, but can degrade throughput on internal non-RAID
storage as it increases the overall number of seek operations.

slice_sync

This parameter defines the length of the time slice (in milliseconds) allotted to each process issuing
synchronous I/O requests. The default value is 100 ms.

8.4.5.1. Tuning CFQ for Fast Storage

The cfq scheduler is not recommended for hardware that does not suffer a large seek penalty, such as
fast external storage arrays or solid-state disks. If your use case requires cfq to be used on this storage,
you will need to edit the following configuration files:

Set /sys/block/devname/queue/iosched/slice_idle to 0

Set /sys/block/devname/queue/iosched/quantum to 64

Set /sys/block/devname/queue/iosched/group_idle to 1

8.4.6. Tuning the noop Scheduler

The noop I/O scheduler is primarily useful for CPU-bound systems that use fast storage. Also, the noop
I/O scheduler is commonly, but not exclusively, used on virtual machines when they are performing I/O
operations to virtual disks.

There are no tunable parameters specific to the noop I/O scheduler.

8.4.7. Configuring File Systems for Performance

This section covers the tuning parameters specific to each file system supported in Red Hat
Enterprise Linux 7. Parameters are divided according to whether their values should be configured when
you format the storage device, or when you mount the formatted device.

Where loss in performance is caused by file fragmentation or resource contention, performance can
generally be improved by reconfiguring the file system. However, in some cases the application may
need to be altered. In this case, Red Hat recommends contacting Customer Support for assistance.

8.4.7.1. Tuning XFS

This section covers some of the tuning parameters available to XFS file systems at format and at mount
time.

The default formatting and mount settings for XFS are suitable for most workloads. Red Hat
recommends changing them only if specific configuration changes are expected to benefit your
workload.

8.4.7.1.1. Formatting Options

For further details about any of these formatting options, see the man page:

$ man mkfs.xfs

CHAPTER 8. STORAGE AND FILE SYSTEMS

79

Directory block size

The directory block size affects the amount of directory information that can be retrieved or modified
per I/O operation. The minimum value for directory block size is the file system block size (4 KB by
default). The maximum value for directory block size is 64 KB.

At a given directory block size, a larger directory requires more I/O than a smaller directory. A system
with a larger directory block size also consumes more processing power per I/O operation than a
system with a smaller directory block size. It is therefore recommended to have as small a directory
and directory block size as possible for your workload.

Red Hat recommends the directory block sizes listed in Table 8.1, “Recommended Maximum
Directory Entries for Directory Block Sizes” for file systems with no more than the listed number of
entries for write-heavy and read-heavy workloads.

Table 8.1. Recommended Maximum Directory Entries for Directory Block Sizes

Directory block size Max. entries (read-heavy) Max. entries (write-heavy)

4 KB 100,000–200,000 1,000,000–2,000,000

16 KB 100,000–1,000,000 1,000,000–10,000,000

64 KB >1,000,000 >10,000,000

For detailed information about the effect of directory block size on read and write workloads in file
systems of different sizes, see the XFS documentation.

To configure directory block size, use the mkfs.xfs -l option. See the mkfs.xfs man page for
details.

Allocation groups

An allocation group is an independent structure that indexes free space and allocated inodes across a
section of the file system. Each allocation group can be modified independently, allowing XFS to
perform allocation and deallocation operations concurrently as long as concurrent operations affect
different allocation groups. The number of concurrent operations that can be performed in the file
system is therefore equal to the number of allocation groups. However, since the ability to perform
concurrent operations is also limited by the number of processors able to perform the operations,
Red Hat recommends that the number of allocation groups be greater than or equal to the number of
processors in the system.

A single directory cannot be modified by multiple allocation groups simultaneously. Therefore,
Red Hat recommends that applications that create and remove large numbers of files do not store all
files in a single directory.

To configure allocation groups, use the mkfs.xfs -d option. See the mkfs.xfs man page for
details.

Growth constraints

If you may need to increase the size of your file system after formatting time (either by adding more
hardware or through thin-provisioning), you must carefully consider initial file layout, as allocation
group size cannot be changed after formatting is complete.

Allocation groups must be sized according to the eventual capacity of the file system, not the initial

Performance Tuning Guide

80

capacity. The number of allocation groups in the fully-grown file system should not exceed several
hundred, unless allocation groups are at their maximum size (1 TB). Therefore for most file systems,
the recommended maximum growth to allow for a file system is ten times the initial size.

Additional care must be taken when growing a file system on a RAID array, as the device size must
be aligned to an exact multiple of the allocation group size so that new allocation group headers are
correctly aligned on the newly added storage. The new storage must also have the same geometry
as the existing storage, since geometry cannot be changed after formatting time, and therefore
cannot be optimized for storage of a different geometry on the same block device.

Inode size and inline attributes

If the inode has sufficient space available, XFS can write attribute names and values directly into the
inode. These inline attributes can be retrieved and modified up to an order of magnitude faster than
retrieving separate attribute blocks, as additional I/O is not required.

The default inode size is 256 bytes. Only around 100 bytes of this is available for attribute storage,
depending on the number of data extent pointers stored in the inode. Increasing inode size when you
format the file system can increase the amount of space available for storing attributes.

Both attribute names and attribute values are limited to a maximum size of 254 bytes. If either name
or value exceeds 254 bytes in length, the attribute is pushed to a separate attribute block instead of
being stored inline.

To configure inode parameters, use the mkfs.xfs -i option. See the mkfs.xfs man page for
details.

RAID

If software RAID is in use, mkfs.xfs automatically configures the underlying hardware with an
appropriate stripe unit and width. However, stripe unit and width may need to be manually configured
if hardware RAID is in use, as not all hardware RAID devices export this information. To configure
stripe unit and width, use the mkfs.xfs -d option. See the mkfs.xfs man page for details.

Log size

Pending changes are aggregated in memory until a synchronization event is triggered, at which point
they are written to the log. The size of the log determines the number of concurrent modifications that
can be in-progress at one time. It also determines the maximum amount of change that can be
aggregated in memory, and therefore how often logged data is written to disk. A smaller log forces
data to be written back to disk more frequently than a larger log. However, a larger log uses more
memory to record pending modifications, so a system with limited memory will not benefit from a
larger log.

Logs perform better when they are aligned to the underlying stripe unit; that is, they start and end at
stripe unit boundaries. To align logs to the stripe unit, use the mkfs.xfs -d option. See the
mkfs.xfs man page for details.

To configure the log size, use the following mkfs.xfs option, replacing logsize with the size of the
log:

mkfs.xfs -l size=logsize

For further details, see the mkfs.xfs man page:

$ man mkfs.xfs

CHAPTER 8. STORAGE AND FILE SYSTEMS

81

Log stripe unit

Log writes on storage devices that use RAID5 or RAID6 layouts may perform better when they start
and end at stripe unit boundaries (are aligned to the underlying stripe unit). mkfs.xfs attempts to set
an appropriate log stripe unit automatically, but this depends on the RAID device exporting this
information.

Setting a large log stripe unit can harm performance if your workload triggers synchronization events
very frequently, because smaller writes need to be padded to the size of the log stripe unit, which can
increase latency. If your workload is bound by log write latency, Red Hat recommends setting the log
stripe unit to 1 block so that unaligned log writes are triggered as possible.

The maximum supported log stripe unit is the size of the maximum log buffer size (256 KB). It is
therefore possible that the underlying storage may have a larger stripe unit than can be configured on
the log. In this case, mkfs.xfs issues a warning and sets a log stripe unit of 32 KB.

To configure the log stripe unit, use one of the following options, where N is the number of blocks to
use as the stripe unit, and size is the size of the stripe unit in KB.

mkfs.xfs -l sunit=Nb
mkfs.xfs -l su=size

For further details, see the mkfs.xfs man page:

$ man mkfs.xfs

8.4.7.1.2. Mount Options

Inode allocation

Highly recommended for file systems greater than 1 TB in size. The inode64 parameter configures
XFS to allocate inodes and data across the entire file system. This ensures that inodes are not
allocated largely at the beginning of the file system, and data is not largely allocated at the end of the
file system, improving performance on large file systems.

Log buffer size and number

The larger the log buffer, the fewer I/O operations it takes to write all changes to the log. A larger log
buffer can improve performance on systems with I/O-intensive workloads that do not have a non-
volatile write cache.

The log buffer size is configured with the logbsize mount option, and defines the maximum amount
of information that can be stored in the log buffer; if a log stripe unit is not set, buffer writes can be
shorter than the maximum, and therefore there is no need to reduce the log buffer size for
synchronization-heavy workloads. The default size of the log buffer is 32 KB. The maximum size is
256 KB and other supported sizes are 64 KB, 128 KB or power of 2 multiples of the log stripe unit
between 32 KB and 256 KB.

The number of log buffers is defined by the logbufs mount option. The default value is 8 log buffers
(the maximum), but as few as two log buffers can be configured. It is usually not necessary to reduce
the number of log buffers, except on memory-bound systems that cannot afford to allocate memory to
additional log buffers. Reducing the number of log buffers tends to reduce log performance,
especially on workloads sensitive to log I/O latency.

Delay change logging

Performance Tuning Guide

82

XFS has the option to aggregate changes in memory before writing them to the log. The delaylog
parameter allows frequently modified metadata to be written to the log periodically instead of every
time it changes. This option increases the potential number of operations lost in a crash and
increases the amount of memory used to track metadata. However, it can also increase metadata
modification speed and scalability by an order of magnitude, and does not reduce data or metadata
integrity when fsync, fdatasync, or sync are used to ensure data and metadata is written to disk.

For more information on mount options, see man xfs

8.4.7.2. Tuning ext4

This section covers some of the tuning parameters available to ext4 file systems at format and at mount
time.

8.4.7.2.1. Formatting Options

Inode table initialization

Initializing all inodes in the file system can take a very long time on very large file systems. By default,
the initialization process is deferred (lazy inode table initialization is enabled). However, if your
system does not have an ext4 driver, lazy inode table initialization is disabled by default. It can be
enabled by setting lazy_itable_init to 1). In this case, kernel processes continue to initialize the
file system after it is mounted.

This section describes only some of the options available at format time. For further formatting
parameters, see the mkfs.ext4 man page:

$ man mkfs.ext4

8.4.7.2.2. Mount Options

Inode table initialization rate

When lazy inode table initialization is enabled, you can control the rate at which initialization occurs
by specifying a value for the init_itable parameter. The amount of time spent performing
background initialization is approximately equal to 1 divided by the value of this parameter. The
default value is 10.

Automatic file synchronization

Some applications do not correctly perform an fsync after renaming an existing file, or after
truncating and rewriting. By default, ext4 automatically synchronizes files after each of these
operations. However, this can be time consuming.

If this level of synchronization is not required, you can disable this behavior by specifying the
noauto_da_alloc option at mount time. If noauto_da_alloc is set, applications must explicitly
use fsync to ensure data persistence.

Journal I/O priority

By default, journal I/O has a priority of 3, which is slightly higher than the priority of normal I/O. You
can control the priority of journal I/O with the journal_ioprio parameter at mount time. Valid
values for journal_ioprio range from 0 to 7, with 0 being the highest priority I/O.

CHAPTER 8. STORAGE AND FILE SYSTEMS

83

This section describes only some of the options available at mount time. For further mount options, see
the mount man page:

$ man mount

8.4.7.3. Tuning Btrfs

Starting with Red Hat Enterprise Linux 7.0, Btrfs is provided as a Technology Preview. Tuning should
always be done to optimize the system based on its current workload. For information on creation and
mounting options, see the chapter on Btrfs in the Red Hat Enterprise Linux 7 Storage Administration
Guide.

Data Compression
The default compression algorithm is zlib, but a specific workload can give a reason to change the
compression algorithm. For example, if you have a single thread with heavy file I/O, using the lzo
algorithm can be more preferable. Options at mount time are:

compress=zlib – the default option with a high compression ratio, safe for older kernels.

compress=lzo – compression faster, but lower, than zlib.

compress=no – disables compression.

compress-force=method – enables compression even for files that do not compress well,
such as videos and disk images. The available methods are zlib and lzo.

Only files created or changed after the mount option is added will be compressed. To compress existing
files, run the following command after you replace method with either zlib or lzo:

$ btrfs filesystem defragment -cmethod

To re-compress the file using lzo, run:

$ btrfs filesystem defragment -r -v -clzo /

8.4.7.4. Tuning GFS2

This section covers some of the tuning parameters available to GFS2 file systems at format and at mount
time.

Directory spacing

All directories created in the top-level directory of the GFS2 mount point are automatically spaced to
reduce fragmentation and increase write speed in those directories. To space another directory like a
top-level directory, mark that directory with the T attribute, as shown, replacing dirname with the path
to the directory you wish to space:

chattr +T dirname

chattr is provided as part of the e2fsprogs package.

Reduce contention

GFS2 uses a global locking mechanism that can require communication between the nodes of a

Performance Tuning Guide

84

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-btrfs.html

cluster. Contention for files and directories between multiple nodes lowers performance. You can
minimize the risk of cross-cache invalidation by minimizing the areas of the file system that are
shared between multiple nodes.

CHAPTER 8. STORAGE AND FILE SYSTEMS

85

CHAPTER 9. NETWORKING
The networking subsystem is comprised of a number of different parts with sensitive connections.
Red Hat Enterprise Linux 7 networking is therefore designed to provide optimal performance for most
workloads, and to optimize its performance automatically. As such, it is not usually necessary to
manually tune network performance. This chapter discusses further optimizations that can be made to
functional networking systems.

Network performance problems are sometimes the result of hardware malfunction or faulty infrastructure.
Resolving these issues is beyond the scope of this document.

9.1. CONSIDERATIONS

To make good tuning decisions, you need a thorough understanding of packet reception in Red Hat
Enterprise Linux. This section explains how network packets are received and processed, and where
potential bottlenecks can occur.

A packet sent to a Red Hat Enterprise Linux system is received by the network interface card (NIC) and
placed in either an internal hardware buffer or a ring buffer. The NIC then sends a hardware interrupt
request, prompting the creation of a software interrupt operation to handle the interrupt request.

As part of the software interrupt operation, the packet is transferred from the buffer to the network stack.
Depending on the packet and your network configuration, the packet is then forwarded, discarded, or
passed to a socket receive queue for an application and then removed from the network stack. This
process continues until either there are no packets left in the NIC hardware buffer, or a certain number of
packets (specified in /proc/sys/net/core/dev_weight) are transferred.

The Red Hat Enterprise Linux Network Performance Tuning Guide available on the Red Hat Customer
Portal contains information on packet reception in the Linux kernel, and covers the following areas of NIC
tuning: SoftIRQ misses (netdev budget), tuned tuning daemon, numad NUMA daemon, CPU power
states, interrupt balancing, pause frames, interrupt coalescence, adapter queue (netdev backlog),
adapter RX and TX buffers, adapter TX queue, module parameters, adapter offloading, Jumbo Frames,
TCP and UDP protocol tuning, and NUMA locality.

9.1.1. Before You Tune

Network performance problems are most often the result of hardware malfunction or faulty infrastructure.
Red Hat highly recommends verifying that your hardware and infrastructure are working as expected
before beginning to tune the network stack.

9.1.2. Bottlenecks in Packet Reception

While the network stack is largely self-optimizing, there are a number of points during network packet
processing that can become bottlenecks and reduce performance.

The NIC hardware buffer or ring buffer

The hardware buffer might be a bottleneck if a large number of packets are being dropped. For
information about monitoring your system for dropped packets, see Section 9.2.4, “ethtool”.

The hardware or software interrupt queues

Interrupts can increase latency and processor contention. For information on how interrupts are
handled by the processor, see Section 6.1.3, “Interrupt Request (IRQ) Handling”. For information on
how to monitor interrupt handling in your system, see Section 6.2.3, “/proc/interrupts”. For
configuration options that affect interrupt handling, see Section 6.3.7, “Setting Interrupt Affinity”.

Performance Tuning Guide

86

https://access.redhat.com/articles/1391433

The socket receive queue for the application

A bottleneck in an application's receive queue is indicated by a large number of packets that are not
copied to the requesting application, or by an increase in UDP input errors (InErrors) in
/proc/net/snmp. For information about monitoring your system for these errors, see Section 9.2.1,
“ss” and Section 9.2.5, “/proc/net/snmp”.

9.2. MONITORING AND DIAGNOSING PERFORMANCE PROBLEMS

Red Hat Enterprise Linux 7 provides a number of tools that are useful for monitoring system performance
and diagnosing performance problems related to the networking subsystem. This section outlines the
available tools and gives examples of how to use them to monitor and diagnose network related
performance issues.

9.2.1. ss

ss is a command-line utility that prints statistical information about sockets, allowing administrators to
assess device performance over time. By default, ss lists open non-listening TCP sockets that have
established connections, but a number of useful options are provided to help administrators filter out
statistics about specific sockets.

Red Hat recommends ss over netstat in Red Hat Enterprise Linux 7.

ss is provided by the iproute package. For more information, see the man page:

$ man ss

9.2.2. ip

The ip utility lets administrators manage and monitor routes, devices, routing policies, and tunnels. The
ip monitor command can continuously monitor the state of devices, addresses, and routes.

ip is provided by the iproute package. For details about using ip, see the man page:

$ man ip

9.2.3. dropwatch

Dropwatch is an interactive tool that monitors and records packets that are dropped by the kernel.

For further information, see the dropwatch man page:

$ man dropwatch

9.2.4. ethtool

The ethtool utility allows administrators to view and edit network interface card settings. It is useful for
observing the statistics of certain devices, such as the number of packets dropped by that device.

You can view the status of a specified device's counters with ethtool -S and the name of the device
you want to monitor.

CHAPTER 9. NETWORKING

87

$ ethtool -S devname

For further information, see the man page:

$ man ethtool

9.2.5. /proc/net/snmp

The /proc/net/snmp file displays data that is used by snmp agents for IP, ICMP, TCP and UDP
monitoring and management. Examining this file on a regular basis can help administrators identify
unusual values and thereby identify potential performance problems. For example, an increase in UDP
input errors (InErrors) in /proc/net/snmp can indicate a bottleneck in a socket receive queue.

9.2.6. Network Monitoring with SystemTap

The Red Hat Enterprise Linux 7 SystemTap Beginner's Guide includes several sample scripts that are
useful for profiling and monitoring network performance.

The following SystemTap example scripts relate to networking and may be useful in diagnosing network
performance problems. By default they are installed to the /usr/share/doc/systemtap-
client/examples/network directory.

nettop.stp

Every 5 seconds, prints a list of processes (process identifier and command) with the number of
packets sent and received and the amount of data sent and received by the process during that
interval.

socket-trace.stp

Instruments each of the functions in the Linux kernel's net/socket.c file, and prints trace data.

dropwatch.stp

Every 5 seconds, prints the number of socket buffers freed at locations in the kernel. Use the --all-
modules option to see symbolic names.

The latencytap.stp script records the effect that different types of latency have on one or more
processes. It prints a list of latency types every 30 seconds, sorted in descending order by the total time
the process or processes spent waiting. This can be useful for identifying the cause of both storage and
network latency. Red Hat recommends using the --all-modules option with this script to better enable
the mapping of latency events. By default, this script is installed to the /usr/share/doc/systemtap-
client-version/examples/profiling directory.

For further information, see the Red Hat Enterprise Linux 7 SystemTap Beginners Guide.

9.3. CONFIGURATION TOOLS

Red Hat Enterprise Linux provides a number of tools to assist administrators in configuring the system.
This section outlines the available tools and provides examples of how they can be used to solve
network related performance problems in Red Hat Enterprise Linux 7.

Performance Tuning Guide

88

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/systemtap_beginners_guide/

However, it is important to keep in mind that network performance problems are sometimes the result of
hardware malfunction or faulty infrastructure. Red Hat highly recommends verifying that your hardware
and infrastructure are working as expected before using these tools to tune the network stack.

Further, some network performance problems are better resolved by altering the application than by
reconfiguring your network subsystem. It is generally a good idea to configure your application to perform
frequent posix calls, even if this means queuing data in the application space, as this allows data to be
stored flexibly and swapped in or out of memory as required.

9.3.1. Tuned Profiles for Network Performance

The Tuned service provides a number of different profiles to improve performance in a number of
specific use cases. The following profiles can be useful for improving networking performance.

latency-performance

network-latency

network-throughput

For more information about these profiles, see Section A.5, “tuned-adm”.

9.3.2. Configuring the Hardware Buffer

If a large number of packets are being dropped by the hardware buffer, there are a number of potential
solutions.

Slow the input traffic

Filter incoming traffic, reduce the number of joined multicast groups, or reduce the amount of
broadcast traffic to decrease the rate at which the queue fills. For details of how to filter incoming
traffic, see the Red Hat Enterprise Linux 7 Security Guide. For details about multicast groups, see the
Red Hat Enterprise Linux 7 Clustering documentation. For details about broadcast traffic, see the
Red Hat Enterprise Linux 7 System Administrator's Guide, or documentation related to the device you
want to configure.

Resize the hardware buffer queue

Reduce the number of packets being dropped by increasing the size of the queue so that the it does
not overflow as easily. You can modify the rx/tx parameters of the network device with the ethtool
command:

ethtool --set-ring devname value

Change the drain rate of the queue

Device weight refers to the number of packets a device can receive at one time (in a single scheduled
processor access). You can increase the rate at which a queue is drained by increasing its device
weight, which is controlled by the dev_weight parameter. This parameter can be temporarily altered
by changing the contents of the /proc/sys/net/core/dev_weight file, or permanently altered
with sysctl, which is provided by the procps-ng package.

Altering the drain rate of a queue is usually the simplest way to mitigate poor network performance.
However, increasing the number of packets that a device can receive at one time uses additional
processor time, during which no other processes can be scheduled, so this can cause other performance
problems.

CHAPTER 9. NETWORKING

89

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/index

9.3.3. Configuring Interrupt Queues

If analysis reveals high latency, your system may benefit from poll-based rather than interrupt-based
packet receipt.

9.3.3.1. Configuring Busy Polling

Busy polling helps reduce latency in the network receive path by allowing socket layer code to poll the
receive queue of a network device, and disabling network interrupts. This removes delays caused by the
interrupt and the resultant context switch. However, it also increases CPU utilization. Busy polling also
prevents the CPU from sleeping, which can incur additional power consumption.

Busy polling is disabled by default. To enable busy polling on specific sockets, do the following.

Set sysctl.net.core.busy_poll to a value other than 0. This parameter controls the
number of microseconds to wait for packets on the device queue for socket poll and selects.
Red Hat recommends a value of 50.

Add the SO_BUSY_POLL socket option to the socket.

To enable busy polling globally, you must also set sysctl.net.core.busy_read to a value other
than 0. This parameter controls the number of microseconds to wait for packets on the device queue for
socket reads. It also sets the default value of the SO_BUSY_POLL option. Red Hat recommends a value
of 50 for a small number of sockets, and a value of 100 for large numbers of sockets. For extremely
large numbers of sockets (more than several hundred), use epoll instead.

Busy polling behavior is supported by the following drivers. These drivers are also supported on Red Hat
Enterprise Linux 7.

bnx2x

be2net

ixgbe

mlx4

myri10ge

As of Red Hat Enterprise Linux 7.1, you can also run the following command to check whether a specific
device supports busy polling.

ethtool -k device | grep "busy-poll"

If this returns busy-poll: on [fixed], busy polling is available on the device.

9.3.4. Configuring Socket Receive Queues

If analysis suggests that packets are being dropped because the drain rate of a socket queue is too slow,
there are several ways to alleviate the performance issues that result.

Decrease the speed of incoming traffic

Decrease the rate at which the queue fills by filtering or dropping packets before they reach the
queue, or by lowering the weight of the device.

Performance Tuning Guide

90

Increase the depth of the application's socket queue

If a socket queue that receives a limited amount of traffic in bursts, increasing the depth of the socket
queue to match the size of the bursts of traffic may prevent packets from being dropped.

9.3.4.1. Decrease the Speed of Incoming Traffic

Filter incoming traffic or lower the network interface card's device weight to slow incoming traffic. For
details of how to filter incoming traffic, see the Red Hat Enterprise Linux 7 Security Guide.

Device weight refers to the number of packets a device can receive at one time (in a single scheduled
processor access). Device weight is controlled by the dev_weight parameter. This parameter can be
temporarily altered by changing the contents of the /proc/sys/net/core/dev_weight file, or
permanently altered with sysctl, which is provided by the procps-ng package.

9.3.4.2. Increasing Queue Depth

Increasing the depth of an application socket queue is typically the easiest way to improve the drain rate
of a socket queue, but it is unlikely to be a long-term solution.

To increase the depth of a queue, increase the size of the socket receive buffer by making either of the
following changes:

Increase the value of /proc/sys/net/core/rmem_default

This parameter controls the default size of the receive buffer used by sockets. This value must be
smaller than or equal to the value of /proc/sys/net/core/rmem_max.

Use setsockopt to configure a larger SO_RCVBUF value

This parameter controls the maximum size in bytes of a socket's receive buffer. Use the getsockopt
system call to determine the current value of the buffer. For further information, see the socket(7)
manual page.

9.3.5. Configuring Receive-Side Scaling (RSS)

Receive-Side Scaling (RSS), also known as multi-queue receive, distributes network receive processing
across several hardware-based receive queues, allowing inbound network traffic to be processed by
multiple CPUs. RSS can be used to relieve bottlenecks in receive interrupt processing caused by
overloading a single CPU, and to reduce network latency.

To determine whether your network interface card supports RSS, check whether multiple interrupt
request queues are associated with the interface in /proc/interrupts. For example, if you are
interested in the p1p1 interface:

egrep 'CPU|p1p1' /proc/interrupts
 CPU0 CPU1 CPU2 CPU3 CPU4 CPU5
89: 40187 0 0 0 0 0 IR-PCI-MSI-edge
p1p1-0
90: 0 790 0 0 0 0 IR-PCI-MSI-edge
p1p1-1
91: 0 0 959 0 0 0 IR-PCI-MSI-edge
p1p1-2
92: 0 0 0 3310 0 0 IR-PCI-MSI-edge
p1p1-3

CHAPTER 9. NETWORKING

91

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/index

93: 0 0 0 0 622 0 IR-PCI-MSI-edge
p1p1-4
94: 0 0 0 0 0 2475 IR-PCI-MSI-edge
p1p1-5

The preceding output shows that the NIC driver created 6 receive queues for the p1p1 interface (p1p1-
0 through p1p1-5). It also shows how many interrupts were processed by each queue, and which CPU
serviced the interrupt. In this case, there are 6 queues because by default, this particular NIC driver
creates one queue per CPU, and this system has 6 CPUs. This is a fairly common pattern among NIC
drivers.

Alternatively, you can check the output of ls -1
/sys/devices/*/*/device_pci_address/msi_irqs after the network driver is loaded. For
example, if you are interested in a device with a PCI address of 0000:01:00.0, you can list the
interrupt request queues of that device with the following command:

ls -1 /sys/devices/*/*/0000:01:00.0/msi_irqs
101
102
103
104
105
106
107
108
109

RSS is enabled by default. The number of queues (or the CPUs that should process network activity) for
RSS are configured in the appropriate network device driver. For the bnx2x driver, it is configured in
num_queues. For the sfc driver, it is configured in the rss_cpus parameter. Regardless, it is typically
configured in /sys/class/net/device/queues/rx-queue/, where device is the name of the
network device (such as eth1) and rx-queue is the name of the appropriate receive queue.

When configuring RSS, Red Hat recommends limiting the number of queues to one per physical CPU
core. Hyper-threads are often represented as separate cores in analysis tools, but configuring queues
for all cores including logical cores such as hyper-threads has not proven beneficial to network
performance.

When enabled, RSS distributes network processing equally between available CPUs based on the
amount of processing each CPU has queued. However, you can use the ethtool --show-rxfh-
indir and --set-rxfh-indir parameters to modify how network activity is distributed, and weight
certain types of network activity as more important than others.

The irqbalance daemon can be used in conjunction with RSS to reduce the likelihood of cross-node
memory transfers and cache line bouncing. This lowers the latency of processing network packets.

9.3.6. Configuring Receive Packet Steering (RPS)

Receive Packet Steering (RPS) is similar to RSS in that it is used to direct packets to specific CPUs for
processing. However, RPS is implemented at the software level, and helps to prevent the hardware
queue of a single network interface card from becoming a bottleneck in network traffic.

RPS has several advantages over hardware-based RSS:

RPS can be used with any network interface card.

Performance Tuning Guide

92

It is easy to add software filters to RPS to deal with new protocols.

RPS does not increase the hardware interrupt rate of the network device. However, it does
introduce inter-processor interrupts.

RPS is configured per network device and receive queue, in the
/sys/class/net/device/queues/rx-queue/rps_cpus file, where device is the name of the
network device (such as eth0) and rx-queue is the name of the appropriate receive queue (such as rx-
0).

The default value of the rps_cpus file is 0. This disables RPS, so the CPU that handles the network
interrupt also processes the packet.

To enable RPS, configure the appropriate rps_cpus file with the CPUs that should process packets
from the specified network device and receive queue.

The rps_cpus files use comma-delimited CPU bitmaps. Therefore, to allow a CPU to handle interrupts
for the receive queue on an interface, set the value of their positions in the bitmap to 1. For example, to
handle interrupts with CPUs 0, 1, 2, and 3, set the value of rps_cpus to f, which is the hexadecimal
value for 15. In binary representation, 15 is 00001111 (1+2+4+8).

For network devices with single transmit queues, best performance can be achieved by configuring RPS
to use CPUs in the same memory domain. On non-NUMA systems, this means that all available CPUs
can be used. If the network interrupt rate is extremely high, excluding the CPU that handles network
interrupts may also improve performance.

For network devices with multiple queues, there is typically no benefit to configuring both RPS and RSS,
as RSS is configured to map a CPU to each receive queue by default. However, RPS may still be
beneficial if there are fewer hardware queues than CPUs, and RPS is configured to use CPUs in the
same memory domain.

9.3.7. Configuring Receive Flow Steering (RFS)

Receive Flow Steering (RFS) extends RPS behavior to increase the CPU cache hit rate and thereby
reduce network latency. Where RPS forwards packets based solely on queue length, RFS uses the RPS
back end to calculate the most appropriate CPU, then forwards packets based on the location of the
application consuming the packet. This increases CPU cache efficiency.

RFS is disabled by default. To enable RFS, you must edit two files:

/proc/sys/net/core/rps_sock_flow_entries

Set the value of this file to the maximum expected number of concurrently active connections. We
recommend a value of 32768 for moderate server loads. All values entered are rounded up to the
nearest power of 2 in practice.

/sys/class/net/device/queues/rx-queue/rps_flow_cnt

Replace device with the name of the network device you wish to configure (for example, eth0), and
rx-queue with the receive queue you wish to configure (for example, rx-0).

Set the value of this file to the value of rps_sock_flow_entries divided by N, where N is the
number of receive queues on a device. For example, if rps_flow_entries is set to 32768 and
there are 16 configured receive queues, rps_flow_cnt should be set to 2048. For single-queue
devices, the value of rps_flow_cnt is the same as the value of rps_sock_flow_entries.

CHAPTER 9. NETWORKING

93

Data received from a single sender is not sent to more than one CPU. If the amount of data received
from a single sender is greater than a single CPU can handle, configure a larger frame size to reduce the
number of interrupts and therefore the amount of processing work for the CPU. Alternatively, consider
NIC offload options or faster CPUs.

Consider using numactl or taskset in conjunction with RFS to pin applications to specific cores,
sockets, or NUMA nodes. This can help prevent packets from being processed out of order.

9.3.8. Configuring Accelerated RFS

Accelerated RFS boosts the speed of RFS by adding hardware assistance. Like RFS, packets are
forwarded based on the location of the application consuming the packet. Unlike traditional RFS,
however, packets are sent directly to a CPU that is local to the thread consuming the data: either the
CPU that is executing the application, or a CPU local to that CPU in the cache hierarchy.

Accelerated RFS is only available if the following conditions are met:

Accelerated RFS must be supported by the network interface card. Accelerated RFS is
supported by cards that export the ndo_rx_flow_steer() netdevice function.

ntuple filtering must be enabled.

Once these conditions are met, CPU to queue mapping is deduced automatically based on traditional
RFS configuration. That is, CPU to queue mapping is deduced based on the IRQ affinities configured by
the driver for each receive queue. Refer to Section 9.3.7, “Configuring Receive Flow Steering (RFS)” for
details on configuring traditional RFS.

Red Hat recommends using accelerated RFS wherever using RFS is appropriate and the network
interface card supports hardware acceleration.

Performance Tuning Guide

94

APPENDIX A. TOOL REFERENCE
This appendix provides a quick reference for the various tools in Red Hat Enterprise Linux 7 that can be
used to tweak performance. See the relevant man page for your tool for complete, up-to-date, detailed
reference material.

A.1. IRQBALANCE

irqbalance is a command line tool that distributes hardware interrupts across processors to improve
system performance. It runs as a daemon by default, but can be run once only with the --oneshot
option.

The following parameters are useful for improving performance.

--powerthresh

Sets the number of CPUs that can idle before a CPU is placed into powersave mode. If more CPUs
than the threshold are more than 1 standard deviation below the average softirq workload and no
CPUs are more than one standard deviation above the average, and have more than one irq
assigned to them, a CPU is placed into powersave mode. In powersave mode, a CPU is not part of
irq balancing so that it is not woken unnecessarily.

--hintpolicy

Determines how irq kernel affinity hinting is handled. Valid values are exact (irq affinity hint is
always applied), subset (irq is balanced, but the assigned object is a subset of the affinity hint), or
ignore (irq affinity hint is ignored completely).

--policyscript

Defines the location of a script to execute for each interrupt request, with the device path and irq
number passed as arguments, and a zero exit code expected by irqbalance. The script defined can
specify zero or more key value pairs to guide irqbalance in managing the passed irq.

The following are recognized as valid key value pairs.

ban

Valid values are true (exclude the passed irq from balancing) or false (perform balancing on
this irq).

balance_level

Allows user override of the balance level of the passed irq. By default the balance level is based
on the PCI device class of the device that owns the irq. Valid values are none, package, cache,
or core.

numa_node

Allows user override of the NUMA node that is considered local to the passed irq. If information
about the local node is not specified in ACPI, devices are considered equidistant from all nodes.
Valid values are integers (starting from 0) that identify a specific NUMA node, and -1, which
specifies that an irq should be considered equidistant from all nodes.

--banirq

APPENDIX A. TOOL REFERENCE

95

The interrupt with the specified interrupt request number is added to the list of banned interrupts.

You can also use the IRQBALANCE_BANNED_CPUS environment variable to specify a mask of CPUs that
are ignored by irqbalance.

For further details, see the man page:

$ man irqbalance

A.2. ETHTOOL

The ethtool utility allows administrators to view and edit network interface card settings. It is useful for
observing the statistics of certain devices, such as the number of packets dropped by that device.

ethtool, its options, and its usage, are comprehensively documented on the man page.

$ man ethtool

A.3. SS

ss is a command-line utility that prints statistical information about sockets, allowing administrators to
assess device performance over time. By default, ss lists open non-listening TCP sockets that have
established connections, but a number of useful options are provided to help administrators filter out
statistics about specific sockets.

One commonly used command is ss -tmpie, which displays all TCP sockets (t, internal TCP
information (i), socket memory usage (m), processes using the socket (p), and detailed socket
information (i).

Red Hat recommends ss over netstat in Red Hat Enterprise Linux 7.

ss is provided by the iproute package. For more information, see the man page:

$ man ss

A.4. TUNED

Tuned is a tuning daemon that can adapt the operating system to perform better under certain
workloads by setting a tuning profile. It can also be configured to react to changes in CPU and network
use and adjusts settings to improve performance in active devices and reduce power consumption in
inactive devices.

To configure dynamic tuning behavior, edit the dynamic_tuning parameter in the
/etc/tuned/tuned-main.conf file. Tuned then periodically analyzes system statistics and uses
them to update your system tuning settings. You can configure the time interval in seconds between
these updates with the update_interval parameter.

For further details about tuned, see the man page:

$ man tuned

Performance Tuning Guide

96

A.5. TUNED-ADM

tuned-adm is a command line tool that enables you to switch between Tuned profiles to improve
performance in a number of specific use cases. It also provides the tuned-adm recommend sub-
command that assesses your system and outputs a recommended tuning profile.

As of Red Hat Enterprise Linux 7, Tuned includes the ability to run any shell command as part of
enabling or disabling a tuning profile. This allows you to extend Tuned profiles with functionality that has
not been integrated into Tuned yet.

Red Hat Enterprise Linux 7 also provides the include parameter in profile definition files, allowing you
to base your own Tuned profiles on existing profiles.

The following tuning profiles are provided with Tuned and are supported in Red Hat Enterprise Linux 7.

throughput-performance

A server profile focused on improving throughput. This is the default profile, and is recommended for
most systems.

This profile favors performance over power savings by setting intel_pstate and
min_perf_pct=100. It enables transparent huge pages, uses cpupower to set the performance
cpufreq governor, and sets the input/output scheduler to deadline. It also sets
kernel.sched_min_granularity_ns to 10 µs, kernel.sched_wakeup_granularity_ns to
15 µs, and vm.dirty_ratio to 40%.

latency-performance

A server profile focused on lowering latency. This profile is recommended for latency-sensitive
workloads that benefit from c-state tuning and the increased TLB efficiency of transparent huge
pages.

This profile favors performance over power savings by setting intel_pstate and
max_perf_pct=100. It enables transparent huge pages, uses cpupower to set the performance
cpufreq governor, and requests a cpu_dma_latency value of 1.

network-latency

A server profile focused on lowering network latency.

This profile favors performance over power savings by setting intel_pstate and
min_perf_pct=100. It disables transparent huge pages, and automatic NUMA balancing. It also
uses cpupower to set the performance cpufreq governor, and requests a cpu_dma_latency
value of 1. It also sets busy_read and busy_poll times to 50 µs, and tcp_fastopen to 3.

network-throughput

A server profile focused on improving network throughput.

This profile favors performance over power savings by setting intel_pstate and
max_perf_pct=100 and increasing kernel network buffer sizes. It enables transparent huge pages,
and uses cpupower to set the performance cpufreq governor. It also sets
kernel.sched_min_granularity_ns to 10 µs, kernel.sched_wakeup_granularity_ns to
15 µs, and vm.dirty_ratio to 40%.

virtual-guest

APPENDIX A. TOOL REFERENCE

97

A profile focused on optimizing performance in Red Hat Enterprise Linux 7 virtual machines as well
as VMware guests.

This profile favors performance over power savings by setting intel_pstate and
max_perf_pct=100. It also decreases the swappiness of virtual memory. It enables transparent
huge pages, and uses cpupower to set the performance cpufreq governor. It also sets
kernel.sched_min_granularity_ns to 10 µs, kernel.sched_wakeup_granularity_ns to
15 µs, and vm.dirty_ratio to 40%.

virtual-host

A profile focused on optimizing performance in Red Hat Enterprise Linux 7 virtualization hosts.

This profile favors performance over power savings by setting intel_pstate and
max_perf_pct=100. It also decreases the swappiness of virtual memory. This profile enables
transparent huge pages and writes dirty pages back to disk more frequently. It uses cpupower to set
the performance cpufreq governor. It also sets kernel.sched_min_granularity_ns to 10 µs,
kernel.sched_wakeup_granularity_ns to 15 µs, kernel.sched_migration_cost to 5 µs,
and vm.dirty_ratio to 40%.

For detailed information about the power saving profiles provided with tuned-adm, see the Red Hat
Enterprise Linux 7 Power Management Guide.

For detailed information about using tuned-adm, see the man page:

$ man tuned-adm

A.6. PERF

The perf tool provides a number of useful commands, some of which are listed in this section. For
detailed information about perf, see the Red Hat Enterprise Linux 7 Developer Guide, or refer to the man
pages.

perf stat

This command provides overall statistics for common performance events, including instructions
executed and clock cycles consumed. You can use the option flags to gather statistics on events
other than the default measurement events. As of Red Hat Enterprise Linux 6.4, it is possible to use
perf stat to filter monitoring based on one or more specified control groups (cgroups).

For further information, read the man page:

$ man perf-stat

perf record

This command records performance data into a file which can be later analyzed using perf report.
For further details, read the man page:

$ man perf-record

perf report

Performance Tuning Guide

98

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/power_management_guide/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/developer_guide/

This command reads the performance data from a file and analyzes the recorded data. For further
details, read the man page:

$ man perf-report

perf list

This command lists the events available on a particular machine. These events vary based on the
performance monitoring hardware and the software configuration of the system. For further
information, read the man page:

$ man perf-list

perf top

This command performs a similar function to the top tool. It generates and displays a performance
counter profile in realtime. For further information, read the man page:

$ man perf-top

perf trace

This command performs a similar function to the strace tool. It monitors the system calls used by a
specified thread or process and all signals received by that application. Additional trace targets are
available; refer to the man page for a full list:

$ man perf-trace

A.7. PERFORMANCE CO-PILOT (PCP)

Performance Co-Pilot (PCP) provides a large number of command-line tools, graphical tools, and
libraries. For more information on these tools, see their respective manual pages.

Table A.1. System Services Distributed with Performance Co-Pilot in Red Hat Enterprise Linux 7

Name Description

pmcd The Performance Metric Collector Daemon (PMCD).

pmie The Performance Metrics Inference Engine.

pmlogger The performance metrics logger.

pmmgr Manages a collection of PCP daemons for a set of discovered local and remote
hosts running the Performance Metric Collector Daemon (PMCD) according to
zero or more configuration directories.

pmproxy The Performance Metric Collector Daemon (PMCD) proxy server.

pmwebd Binds a subset of the Performance Co-Pilot client API to RESTful web applications
using the HTTP protocol.

APPENDIX A. TOOL REFERENCE

99

Table A.2. Tools Distributed with Performance Co-Pilot in Red Hat Enterprise Linux 7

Name Description

pcp Displays the current status of a Performance Co-Pilot installation.

pmatop Shows the system-level occupation of the most critical hardware resources from
the performance point of view: CPU, memory, disk, and network.

pmchart Plots performance metrics values available through the facilities of the
Performance Co-Pilot.

pmclient Displays high-level system performance metrics by using the Performance Metrics
Application Programming Interface (PMAPI).

pmcollectl Collects and displays system-level data, either from a live system or from a
Performance Co-Pilot archive file.

pmconfig Displays the values of configuration parameters.

pmdbg Displays available Performance Co-Pilot debug control flags and their values.

pmdiff Compares the average values for every metric in either one or two archives, in a
given time window, for changes that are likely to be of interest when searching for
performance regressions.

pmdumplog Displays control, metadata, index, and state information from a Performance Co-
Pilot archive file.

pmdumptext Outputs the values of performance metrics collected live or from a Performance
Co-Pilot archive.

pmerr Displays available Performance Co-Pilot error codes and their corresponding error
messages.

pmfind Finds PCP services on the network.

pmie An inference engine that periodically evaluates a set of arithmetic, logical, and rule
expressions. The metrics are collected either from a live system, or from a
Performance Co-Pilot archive file.

pmieconf Displays or sets configurable pmie variables.

pminfo Displays information about performance metrics. The metrics are collected either
from a live system, or from a Performance Co-Pilot archive file.

pmiostat Reports I/O statistics for SCSI devices (by default) or device-mapper devices
(with the -x dm option).

Performance Tuning Guide

100

pmlc Interactively configures active pmlogger instances.

pmlogcheck Identifies invalid data in a Performance Co-Pilot archive file.

pmlogconf Creates and modifies a pmlogger configuration file.

pmloglabel Verifies, modifies, or repairs the label of a Performance Co-Pilot archive file.

pmlogsummary Calculates statistical information about performance metrics stored in a
Performance Co-Pilot archive file.

pmprobe Determines the availability of performance metrics.

pmrep Reports on selected, easily customizable, performance metrics values.

pmsocks Allows access to a Performance Co-Pilot hosts through a firewall.

pmstat Periodically displays a brief summary of system performance.

pmstore Modifies the values of performance metrics.

pmtrace Provides a command line interface to the trace Performance Metrics Domain
Agent (PMDA).

pmval Displays the current value of a performance metric.

Name Description

Table A.3. PCP Metric Groups for XFS

Metric Group Metrics provided

xfs.* General XFS metrics including the read and write operation counts, read and write
byte counts. Along with counters for the number of times inodes are flushed,
clustered and number of failure to cluster.

xfs.allocs.*

xfs.alloc_btree.*

Range of metrics regarding the allocation of objects in the file system, these
include number of extend and block creations/frees. Allocation tree lookup and
compares along with extend record creation and deletion from the btree.

xfs.block_map.*

xfs.bmap_tree.*

Metrics include the number of block map read/write and block deletions, extent list
operations for insertion, deletions and lookups. Also operations counters for
compares, lookups, insertions and deletion operations from the blockmap.

xfs.dir_ops.* Counters for directory operations on XFS file systems for creation, entry deletions,
count of “getdent” operations.

APPENDIX A. TOOL REFERENCE

101

xfs.transactions.* Counters for the number of meta-data transactions, these include the count for the
number of synchronous and asynchronous transactions along with the number of
empty transactions.

xfs.inode_ops.* Counters for the XFS inode operations, these include metrics for the number of
looks for inodes in memory, number of time inodes in memory. Also metrics for
counts of inode attribute changes.

xfs.log.*

xfs.log_tail.*

Counters for the number of log buffer writes over XFS file sytems includes the
number of blocks written to disk. Metrics also for the number of log flushes and
pinning.

xfs.xstrat.* Counts for the number of bytes of file data flushed out by the XFS flush deamon
along with counters for number of buffers flushed to contiguous and non-
contiguous space on disk.

xfs.attr.* Counts for the number of attribute get, set, remove and list operations over all XFS
file systems.

xfs.quota.* Metrics for quota operation over XFS file systems, these include counters for
number of quota reclaims, quota cache misses, cache hits and quota data
reclaims.

xfs.buffer.* Range of metrics regarding XFS buffer objects. Counters include the number of
requested buffer calls, successful buffer locks, waited buffer locks, miss_locks,
miss_retries and buffer hits when looking up pages.

xfs.btree.* Metrics regarding the operations of the XFS btree.

xfs.control.reset Configuration metrics which are used to reset the metric counters for the XFS
stats. Control metrics are toggled by means of the pmstore tool.

Metric Group Metrics provided

Table A.4. PCP Metric Groups for XFS per Device

Metric Group Metrics provided

xfs.perdev.* General XFS metrics including the read and write operation counts, read and write
byte counts. Along with counters for the number of times inodes are flushed,
clustered and number of failure to cluster.

xfs.perdev.allocs.*

xfs.perdev.alloc_btree.*

Range of metrics regarding the allocation of objects in the file system, these
include number of extend and block creations/frees. Allocation tree lookup and
compares along with extend record creation and deletion from the btree.

xfs.perdev.block_map.*

xfs.perdev.bmap_tree.*

Metrics include the number of block map read/write and block deletions, extent list
operations for insertion, deletions and lookups. Also operations counters for
compares, lookups, insertions and deletion operations from the blockmap.

Performance Tuning Guide

102

xfs.perdev.dir_ops.* Counters for directory operations of XFS file systems for creation, entry deletions,
count of “getdent” operations.

xfs.perdev.transactions.* Counters for the number of meta-data transactions, these include the count for the
number of synchronous and asynchronous transactions along with the number of
empty transactions.

xfs.perdev.inode_ops.* Counters for the XFS inode operations, these include metrics for the number of
looks for inodes in memory, number of time inodes in memory. Also metrics for
counts of inode attribute changes.

xfs.perdev.log.*

xfs.perdev.log_tail.*

Counters for the number of log buffer writes over XFS filesytems includes the
number of blocks written to disk. Metrics also for the number of log flushes and
pinning.

xfs.perdev.xstrat.* Counts for the number of bytes of file data flushed out by the XFS flush deamon
along with counters for number of buffers flushed to contiguous and non-
contiguous space on disk.

xfs.perdev.attr.* Counts for the number of attribute get, set, remove and list operations over all XFS
file systems.

xfs.perdev.quota.* Metrics for quota operation over XFS file systems, these include counters for
number of quota reclaims, quota cache misses, cache hits and quota data
reclaims.

xfs.perdev.buffer.* Range of metrics regarding XFS buffer objects. Counters include the number of
requested buffer calls, successful buffer locks, waited buffer locks, miss_locks,
miss_retries and buffer hits when looking up pages.

xfs.perdev.btree.* Metrics regarding the operations of the XFS btree.

Metric Group Metrics provided

A.8. VMSTAT

Vmstat outputs reports on your system's processes, memory, paging, block input/output, interrupts, and
CPU activity. It provides an instantaneous report of the average of these events since the machine was
last booted, or since the previous report.

-a

Displays active and inactive memory.

-f

Displays the number of forks since boot. This includes the fork, vfork, and clone system calls,
and is equivalent to the total number of tasks created. Each process is represented by one or more
tasks, depending on thread usage. This display does not repeat.

-m

APPENDIX A. TOOL REFERENCE

103

Displays slab information.

-n

Specifies that the header will appear once, not periodically.

-s

Displays a table of various event counters and memory statistics. This display does not repeat.

delay

The delay between reports in seconds. If no delay is specified, only one report is printed, with the
average values since the machine was last booted.

count

The number of times to report on the system. If no count is specified and delay is defined, vmstat
reports indefinitely.

-d

Displays disk statistics.

-p

Takes a partition name as a value, and reports detailed statistics for that partition.

-S

Defines the units output by the report. Valid values are k (1000 bytes), K (1024 bytes), m (1,000,000
bytes), or M (1,048,576 bytes).

-D

Report summary statistics about disk activity.

For detailed information about the output provided by each output mode, see the man page:

$ man vmstat

A.9. X86_ENERGY_PERF_POLICY

The x86_energy_perf_policy tool allows administrators to define the relative importance of performance
and energy efficiency. It is provided by the kernel-tools package.

To view the current policy, run the following command:

x86_energy_perf_policy -r

To set a new policy, run the following command:

x86_energy_perf_policy profile_name

Replace profile_name with one of the following profiles.

Performance Tuning Guide

104

performance

The processor does not sacrifice performance for the sake of saving energy. This is the default value.

normal

The processor tolerates minor performance compromises for potentially significant energy savings.
This is a reasonable saving for most servers and desktops.

powersave

The processor accepts potentially significant performance decreases in order to maximize energy
efficiency.

For further details of how to use x86_energy_perf_policy, see the man page:

$ man x86_energy_perf_policy

A.10. TURBOSTAT

The turbostat tool provides detailed information about the amount of time that the system spends in
different states. Turbostat is provided by the kernel-tools package.

By default, turbostat prints a summary of counter results for the entire system, followed by counter
results every 5 seconds, under the following headings:

pkg

The processor package number.

core

The processor core number.

CPU

The Linux CPU (logical processor) number.

%c0

The percentage of the interval for which the CPU retired instructions.

GHz

When this number is higher than the value in TSC, the CPU is in turbo mode

TSC

The average clock speed over the course of the entire interval.

%c1, %c3, and %c6

The percentage of the interval for which the processor was in the c1, c3, or c6 state, respectively.

%pc3 or %pc6

The percentage of the interval for which the processor was in the pc3 or pc6 state, respectively.

APPENDIX A. TOOL REFERENCE

105

Specify a different period between counter results with the -i option, for example, run turbostat -i
10 to print results every 10 seconds instead.

NOTE

Upcoming Intel processors may add additional c-states. As of Red Hat
Enterprise Linux 7.0, turbostat provides support for the c7, c8, c9, and c10 states.

A.11. NUMASTAT

The numastat tool is provided by the numactl package, and displays memory statistics (such as
allocation hits and misses) for processes and the operating system on a per-NUMA-node basis. The
default tracking categories for the numastat command are outlined as follows:

numa_hit

The number of pages that were successfully allocated to this node.

numa_miss

The number of pages that were allocated on this node because of low memory on the intended node.
Each numa_miss event has a corresponding numa_foreign event on another node.

numa_foreign

The number of pages initially intended for this node that were allocated to another node instead. Each
numa_foreign event has a corresponding numa_miss event on another node.

interleave_hit

The number of interleave policy pages successfully allocated to this node.

local_node

The number of pages successfully allocated on this node, by a process on this node.

other_node

The number of pages allocated on this node, by a process on another node.

Supplying any of the following options changes the displayed units to megabytes of memory (rounded to
two decimal places), and changes other specific numastat behaviors as described below.

-c

Horizontally condenses the displayed table of information. This is useful on systems with a large
number of NUMA nodes, but column width and inter-column spacing are somewhat unpredictable.
When this option is used, the amount of memory is rounded to the nearest megabyte.

-m

Displays system-wide memory usage information on a per-node basis, similar to the information
found in /proc/meminfo.

-n

Performance Tuning Guide

106

Displays the same information as the original numastat command (numa_hit, numa_miss,
numa_foreign, interleave_hit, local_node, and other_node), with an updated format,
using megabytes as the unit of measurement.

-p pattern

Displays per-node memory information for the specified pattern. If the value for pattern is comprised
of digits, numastat assumes that it is a numerical process identifier. Otherwise, numastat searches
process command lines for the specified pattern.

Command line arguments entered after the value of the -p option are assumed to be additional
patterns for which to filter. Additional patterns expand, rather than narrow, the filter.

-s

Sorts the displayed data in descending order so that the biggest memory consumers (according to the
total column) are listed first.

Optionally, you can specify a node, and the table will be sorted according to the node column. When
using this option, the node value must follow the -s option immediately, as shown here:

numastat -s2

Do not include white space between the option and its value.

-v

Displays more verbose information. Namely, process information for multiple processes will display
detailed information for each process.

-V

Displays numastat version information.

-z

Omits table rows and columns with only zero values from the displayed information. Note that some
near-zero values that are rounded to zero for display purposes will not be omitted from the displayed
output.

A.12. NUMACTL

Numactl lets administrators run a process with a specified scheduling or memory placement policy.
Numactl can also set a persistent policy for shared memory segments or files, and set the processor
affinity and memory affinity of a process.

Numactl provides a number of useful options. This appendix outlines some of these options and gives
suggestions for their use, but is not exhaustive.

--hardware

Displays an inventory of available nodes on the system, including relative distances between nodes.

--membind

Ensures that memory is allocated only from specific nodes. If there is insufficient memory available in
the specified location, allocation fails.

APPENDIX A. TOOL REFERENCE

107

--cpunodebind

Ensures that a specified command and its child processes execute only on the specified node.

--phycpubind

Ensures that a specified command and its child processes execute only on the specified processor.

--localalloc

Specifies that memory should always be allocated from the local node.

--preferred

Specifies a preferred node from which to allocate memory. If memory cannot be allocated from this
specified node, another node will be used as a fallback.

For further details about these and other parameters, see the man page:

$ man numactl

A.13. NUMAD

numad is an automatic NUMA affinity management daemon. It monitors NUMA topology and resource
usage within a system in order to dynamically improve NUMA resource allocation and management.

Note that when numad is enabled, its behavior overrides the default behavior of automatic NUMA
balancing.

A.13.1. Using numad from the Command Line

To use numad as an executable, just run:

numad

While numad runs, its activities are logged in /var/log/numad.log. It will run until stopped with the
following command:

numad -i 0

Stopping numad does not remove the changes it has made to improve NUMA affinity. If system use
changes significantly, running numad again will adjust affinity to improve performance under the new
conditions.

To restrict numad management to a specific process, start it with the following options.

numad -S 0 -p pid

-p pid

This option adds the specified pid to an explicit inclusion list. The process specified will not be
managed until it meets the numad process significance threshold.

-S 0

Performance Tuning Guide

108

This sets the type of process scanning to 0, which limits numad management to explicitly included
processes.

For further information about available numad options, refer to the numad man page:

$ man numad

A.13.2. Using numad as a Service

While numad runs as a service, it attempts to tune the system dynamically based on the current system
workload. Its activities are logged in /var/log/numad.log.

To start the service, run:

systemctl start numad.service

To make the service persist across reboots, run:

chkconfig numad on

For further information about available numad options, refer to the numad man page:

$ man numad

A.13.3. Pre-Placement Advice

numad provides a pre-placement advice service that can be queried by various job management
systems to provide assistance with the initial binding of CPU and memory resources for their processes.
This pre-placement advice is available regardless of whether numad is running as an executable or a
service.

A.13.4. Using numad with KSM

If KSM is in use on a NUMA system, change the value of the /sys/kernel/mm/ksm/merge_nodes
parameter to 0 to avoid merging pages across NUMA nodes. Otherwise, KSM increases remote memory
accesses as it merges pages across nodes. Furthermore, kernel memory accounting statistics can
eventually contradict each other after large amounts of cross-node merging. As such, numad can
become confused about the correct amounts and locations of available memory, after the KSM daemon
merges many memory pages. KSM is beneficial only if you are overcommitting the memory on your
system. If your system has sufficient free memory, you may achieve higher performance by turning off
and disabling the KSM daemon.

A.14. OPROFILE

OProfile is a low overhead, system-wide performance monitoring tool provided by the oprofile package.
It uses the performance monitoring hardware on the processor to retrieve information about the kernel
and executables on the system, such as when memory is referenced, the number of second-level cache
requests, and the number of hardware interrupts received. OProfile is also able to profile applications
that run in a Java Virtual Machine (JVM).

APPENDIX A. TOOL REFERENCE

109

OProfile provides the following tools. Note that the legacy opcontrol tool and the new operf tool are
mutually exclusive.

ophelp

Displays available events for the system’s processor along with a brief description of each.

opimport

Converts sample database files from a foreign binary format to the native format for the system. Only
use this option when analyzing a sample database from a different architecture.

opannotate

Creates annotated source for an executable if the application was compiled with debugging symbols.

opcontrol

Configures which data is collected in a profiling run.

operf

Intended to replace opcontrol. The operf tool uses the Linux Performance Events subsystem,
allowing you to target your profiling more precisely, as a single process or system-wide, and allowing
OProfile to co-exist better with other tools using the performance monitoring hardware on your
system. Unlike opcontrol, no initial setup is required, and it can be used without the root privileges
unless the --system-wide option is in use.

opreport

Retrieves profile data.

oprofiled

Runs as a daemon to periodically write sample data to disk.

Legacy mode (opcontrol, oprofiled, and post-processing tools) remains available, but is no longer
the recommended profiling method.

For further information about any of these commands, see the OProfile man page:

$ man oprofile

A.15. TASKSET

The taskset tool is provided by the util-linux package. It allows administrators to retrieve and set the
processor affinity of a running process, or launch a process with a specified processor affinity.

IMPORTANT

taskset does not guarantee local memory allocation. If you require the additional
performance benefits of local memory allocation, Red Hat recommends using numactl
instead of taskset.

To set the CPU affinity of a running process, run the following command:

Performance Tuning Guide

110

taskset -c processors pid

Replace processors with a comma delimited list of processors or ranges of processors (for example,
1,3,5-7. Replace pid with the process identifier of the process that you want to reconfigure.

To launch a process with a specified affinity, run the following command:

taskset -c processors -- application

Replace processors with a comma delimited list of processors or ranges of processors. Replace
application with the command, options and arguments of the application you want to run.

For more information about taskset, see the man page:

$ man taskset

A.16. SYSTEMTAP

SystemTap is extensively documented in its own guides: the Red Hat Enterprise Linux 7 versions of the
SystemTap Beginners Guide and the SystemTap Tapset Reference.

APPENDIX A. TOOL REFERENCE

111

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/systemtap_beginners_guide/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/systemtap_tapset_reference/index

APPENDIX B. REVISION HISTORY

Revision 10.14-0 Mon Oct 22 2018 Marek Suchánek
Preparing document for 7.6 GA publication.

Revision 10.13-59 Mon May 21 2018 Marek Suchánek
Asynchronous update.

Revision 10.14-00 Fri Apr 6 2018 Marek Suchánek
Preparing document for 7.5 GA publication.

Revision 10.13-58 Fri Mar 23 2018 Marek Suchánek
New sections: pqos.

Revision 10.13-57 Wed Feb 28 2018 Marek Suchánek
Asynchronous update.

Revision 10.13-50 Thu Jul 27 2017 Milan Navrátil
Document version for 7.4 GA publication.

Revision 10.13-44 Tue Dec 13 2016 Milan Navrátil
Asynchronous update.

Revision 10.08-38 Wed Nov 11 2015 Jana Heves
Version for 7.2 GA release.

Revision 0.3-23 Tue Feb 17 2015 Laura Bailey
Building for RHEL 7.1 GA.

Revision 0.3-3 Mon Apr 07 2014 Laura Bailey
Rebuilding for RHEL 7.0 GA.

Performance Tuning Guide

112

	Table of Contents
	CHAPTER 1. INTRODUCTION
	Who Should Read This Book

	CHAPTER 2. PERFORMANCE MONITORING TOOLS
	2.1. /PROC
	2.2. GNOME SYSTEM MONITOR
	2.3. BUILT-IN COMMAND-LINE TOOLS
	2.3.1. top
	2.3.2. ps
	2.3.3. Virtual Memory Statistics (vmstat)
	2.3.4. System Activity Reporter (sar)

	2.4. PERF
	2.5. TURBOSTAT
	2.6. IOSTAT
	2.7. IRQBALANCE
	2.8. SS
	2.9. NUMASTAT
	2.10. NUMAD
	2.11. SYSTEMTAP
	2.12. OPROFILE
	2.13. VALGRIND
	2.14. PQOS
	Additional Resources

	CHAPTER 3. TUNED
	3.1. TUNED OVERVIEW
	3.1.1. Plug-ins
	3.1.2. Installation and Usage
	3.1.3. Custom Profiles
	3.1.4. Tuned-adm
	3.1.5. powertop2tuned

	3.2. PERFORMANCE TUNING WITH TUNED AND TUNED-ADM
	tuned Profiles Overview
	tuned Boot Loader plug-in
	Environment Variables and Expanding tuned Built-In Functions
	Modifying Default System tuned Profiles
	Resources

	CHAPTER 4. TUNA
	4.1. REVIEWING THE SYSTEM WITH TUNA
	4.2. TUNING CPUS WITH TUNA
	4.3. TUNING IRQS WITH TUNA
	4.4. TUNING TASKS WITH TUNA
	4.5. EXAMPLES OF USING TUNA

	CHAPTER 5. PERFORMANCE CO-PILOT (PCP)
	5.1. PCP OVERVIEW AND RESOURCES
	Resources

	5.2. XFS FILE SYSTEM PERFORMANCE ANALYSIS WITH PERFORMANCE CO-PILOT
	5.2.1. Installing XFS PMDA to Gather XFS Data with PCP
	Installing XFS PMDA Manually
	5.2.2. Configuring and Examining XFS Performance Metrics
	Examining Metrics with pminfo
	Configuring Metrics with pmstore

	5.2.3. Examining XFS Metrics Available per File System
	5.2.4. Logging Performance Data with pmlogger
	Modifying the pmlogger Configuration File with pmlogconf
	Modifying the pmlogger Configuration File Manually
	Replaying the PCP Log Archives
	5.2.5. Visual Tracing with PCP Charts

	5.3. PERFORMING MINIMAL PCP SETUP TO GATHER FILE SYSTEM DATA

	CHAPTER 6. CPU
	6.1. CONSIDERATIONS
	6.1.1. System Topology
	6.1.1.1. Determining System Topology

	6.1.2. Scheduling
	6.1.2.1. Kernel Ticks

	6.1.3. Interrupt Request (IRQ) Handling

	6.2. MONITORING AND DIAGNOSING PERFORMANCE PROBLEMS
	6.2.1. turbostat
	6.2.2. numastat
	6.2.3. /proc/interrupts
	6.2.4. Cache and Memory Bandwidth Monitoring with pqos
	Additional Resources

	6.3. CONFIGURATION SUGGESTIONS
	6.3.1. Configuring Kernel Tick Time
	6.3.2. Setting Hardware Performance Policy (x86_energy_perf_policy)
	6.3.3. Setting Process Affinity with taskset
	6.3.4. Managing NUMA Affinity with numactl
	6.3.5. Automatic NUMA Affinity Management with numad
	6.3.6. Tuning Scheduling Policy
	6.3.6.1. Scheduling Policies
	6.3.6.2. Isolating CPUs

	6.3.7. Setting Interrupt Affinity
	6.3.8. Configuring CPU, Thread, and Interrupt Affinity with Tuna

	CHAPTER 7. MEMORY
	7.1. CONSIDERATIONS
	7.1.1. Larger Page Size
	7.1.2. Translation Lookaside Buffer Size

	7.2. MONITORING AND DIAGNOSING PERFORMANCE PROBLEMS
	7.2.1. Monitoring Memory Usage with vmstat
	7.2.2. Profiling Application Memory Usage with Valgrind
	7.2.2.1. Profiling Memory Usage with Memcheck
	7.2.2.2. Profiling Cache Usage with Cachegrind
	7.2.2.3. Profiling Heap and Stack Space with Massif

	7.3. CONFIGURING HUGETLB HUGE PAGES
	7.3.1. Configuring Huge Pages at Boot Time
	7.3.2. Configuring Huge Pages at Run Time

	7.4. CONFIGURING TRANSPARENT HUGE PAGES
	7.5. CONFIGURING SYSTEM MEMORY CAPACITY
	7.5.1. Virtual Memory Parameters
	7.5.2. File System Parameters
	7.5.3. Kernel Parameters

	CHAPTER 8. STORAGE AND FILE SYSTEMS
	8.1. CONSIDERATIONS
	8.1.1. I/O Schedulers
	8.1.2. File Systems
	8.1.2.1. XFS
	8.1.2.2. Ext4
	8.1.2.3. Btrfs (Technology Preview)
	8.1.2.4. GFS2

	8.1.3. Generic Tuning Considerations for File Systems
	8.1.3.1. Considerations at Format Time
	8.1.3.2. Considerations at Mount Time
	8.1.3.3. Maintenance

	8.2. MONITORING AND DIAGNOSING PERFORMANCE PROBLEMS
	8.2.1. Monitoring System Performance with vmstat
	8.2.2. Monitoring I/O Performance with iostat
	8.2.2.1. Detailed I/O Analysis with blktrace
	8.2.2.2. Analyzing blktrace Output with btt
	8.2.2.3. Analyzing blktrace Output with seekwatcher

	8.2.3. Storage Monitoring with SystemTap

	8.3. SOLID-STATE DISKS
	SSD Tuning Considerations

	8.4. CONFIGURATION TOOLS
	8.4.1. Configuring Tuning Profiles for Storage Performance
	8.4.2. Setting the Default I/O Scheduler
	8.4.3. Generic Block Device Tuning Parameters
	8.4.4. Tuning the Deadline Scheduler
	8.4.5. Tuning the CFQ Scheduler
	8.4.5.1. Tuning CFQ for Fast Storage

	8.4.6. Tuning the noop Scheduler
	8.4.7. Configuring File Systems for Performance
	8.4.7.1. Tuning XFS
	8.4.7.2. Tuning ext4
	8.4.7.3. Tuning Btrfs

	Data Compression
	8.4.7.4. Tuning GFS2

	CHAPTER 9. NETWORKING
	9.1. CONSIDERATIONS
	9.1.1. Before You Tune
	9.1.2. Bottlenecks in Packet Reception

	9.2. MONITORING AND DIAGNOSING PERFORMANCE PROBLEMS
	9.2.1. ss
	9.2.2. ip
	9.2.3. dropwatch
	9.2.4. ethtool
	9.2.5. /proc/net/snmp
	9.2.6. Network Monitoring with SystemTap

	9.3. CONFIGURATION TOOLS
	9.3.1. Tuned Profiles for Network Performance
	9.3.2. Configuring the Hardware Buffer
	9.3.3. Configuring Interrupt Queues
	9.3.3.1. Configuring Busy Polling

	9.3.4. Configuring Socket Receive Queues
	9.3.4.1. Decrease the Speed of Incoming Traffic
	9.3.4.2. Increasing Queue Depth

	9.3.5. Configuring Receive-Side Scaling (RSS)
	9.3.6. Configuring Receive Packet Steering (RPS)
	9.3.7. Configuring Receive Flow Steering (RFS)
	9.3.8. Configuring Accelerated RFS

	APPENDIX A. TOOL REFERENCE
	A.1. IRQBALANCE
	A.2. ETHTOOL
	A.3. SS
	A.4. TUNED
	A.5. TUNED-ADM
	A.6. PERF
	A.7. PERFORMANCE CO-PILOT (PCP)
	A.8. VMSTAT
	A.9. X86_ENERGY_PERF_POLICY
	A.10. TURBOSTAT
	A.11. NUMASTAT
	A.12. NUMACTL
	A.13. NUMAD
	A.13.1. Using numad from the Command Line
	A.13.2. Using numad as a Service
	A.13.3. Pre-Placement Advice
	A.13.4. Using numad with KSM

	A.14. OPROFILE
	A.15. TASKSET
	A.16. SYSTEMTAP

	APPENDIX B. REVISION HISTORY

